![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pnfnre | Unicode version |
Description: Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
Ref | Expression |
---|---|
pnfnre |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 7527 |
. . . . . 6
![]() ![]() ![]() ![]() | |
2 | 1 | uniex 4273 |
. . . . 5
![]() ![]() ![]() ![]() ![]() |
3 | pwuninel2 6061 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | ax-mp 7 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | df-pnf 7585 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 5 | eleq1i 2154 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 4, 6 | mtbir 632 |
. . 3
![]() ![]() ![]() ![]() ![]() |
8 | recn 7536 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 7, 8 | mto 624 |
. 2
![]() ![]() ![]() ![]() ![]() |
10 | 9 | nelir 2354 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-un 4269 ax-cnex 7497 ax-resscn 7498 |
This theorem depends on definitions: df-bi 116 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-nel 2352 df-rex 2366 df-rab 2369 df-v 2622 df-in 3006 df-ss 3013 df-pw 3435 df-uni 3660 df-pnf 7585 |
This theorem is referenced by: renepnf 7596 nn0nepnf 8805 xrltnr 9311 pnfnlt 9318 inftonninf 9908 |
Copyright terms: Public domain | W3C validator |