ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfnre Unicode version

Theorem pnfnre 8149
Description: Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
pnfnre  |- +oo  e/  RR

Proof of Theorem pnfnre
StepHypRef Expression
1 cnex 8084 . . . . . 6  |-  CC  e.  _V
21uniex 4502 . . . . 5  |-  U. CC  e.  _V
3 pwuninel2 6391 . . . . 5  |-  ( U. CC  e.  _V  ->  -.  ~P U. CC  e.  CC )
42, 3ax-mp 5 . . . 4  |-  -.  ~P U. CC  e.  CC
5 df-pnf 8144 . . . . 5  |- +oo  =  ~P U. CC
65eleq1i 2273 . . . 4  |-  ( +oo  e.  CC  <->  ~P U. CC  e.  CC )
74, 6mtbir 673 . . 3  |-  -. +oo  e.  CC
8 recn 8093 . . 3  |-  ( +oo  e.  RR  -> +oo  e.  CC )
97, 8mto 664 . 2  |-  -. +oo  e.  RR
109nelir 2476 1  |- +oo  e/  RR
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 2178    e/ wnel 2473   _Vcvv 2776   ~Pcpw 3626   U.cuni 3864   CCcc 7958   RRcr 7959   +oocpnf 8139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-un 4498  ax-cnex 8051  ax-resscn 8052
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-nel 2474  df-rex 2492  df-rab 2495  df-v 2778  df-in 3180  df-ss 3187  df-pw 3628  df-uni 3865  df-pnf 8144
This theorem is referenced by:  renepnf  8155  nn0nepnf  9401  xrltnr  9936  pnfnlt  9944  xnn0lenn0nn0  10022  inftonninf  10624  pcgcd1  12766  pc2dvds  12768
  Copyright terms: Public domain W3C validator