ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfnre Unicode version

Theorem pnfnre 8116
Description: Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
pnfnre  |- +oo  e/  RR

Proof of Theorem pnfnre
StepHypRef Expression
1 cnex 8051 . . . . . 6  |-  CC  e.  _V
21uniex 4485 . . . . 5  |-  U. CC  e.  _V
3 pwuninel2 6370 . . . . 5  |-  ( U. CC  e.  _V  ->  -.  ~P U. CC  e.  CC )
42, 3ax-mp 5 . . . 4  |-  -.  ~P U. CC  e.  CC
5 df-pnf 8111 . . . . 5  |- +oo  =  ~P U. CC
65eleq1i 2271 . . . 4  |-  ( +oo  e.  CC  <->  ~P U. CC  e.  CC )
74, 6mtbir 673 . . 3  |-  -. +oo  e.  CC
8 recn 8060 . . 3  |-  ( +oo  e.  RR  -> +oo  e.  CC )
97, 8mto 664 . 2  |-  -. +oo  e.  RR
109nelir 2474 1  |- +oo  e/  RR
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 2176    e/ wnel 2471   _Vcvv 2772   ~Pcpw 3616   U.cuni 3850   CCcc 7925   RRcr 7926   +oocpnf 8106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-un 4481  ax-cnex 8018  ax-resscn 8019
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-nel 2472  df-rex 2490  df-rab 2493  df-v 2774  df-in 3172  df-ss 3179  df-pw 3618  df-uni 3851  df-pnf 8111
This theorem is referenced by:  renepnf  8122  nn0nepnf  9368  xrltnr  9903  pnfnlt  9911  xnn0lenn0nn0  9989  inftonninf  10589  pcgcd1  12684  pc2dvds  12686
  Copyright terms: Public domain W3C validator