ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfnre Unicode version

Theorem pnfnre 8188
Description: Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
pnfnre  |- +oo  e/  RR

Proof of Theorem pnfnre
StepHypRef Expression
1 cnex 8123 . . . . . 6  |-  CC  e.  _V
21uniex 4528 . . . . 5  |-  U. CC  e.  _V
3 pwuninel2 6428 . . . . 5  |-  ( U. CC  e.  _V  ->  -.  ~P U. CC  e.  CC )
42, 3ax-mp 5 . . . 4  |-  -.  ~P U. CC  e.  CC
5 df-pnf 8183 . . . . 5  |- +oo  =  ~P U. CC
65eleq1i 2295 . . . 4  |-  ( +oo  e.  CC  <->  ~P U. CC  e.  CC )
74, 6mtbir 675 . . 3  |-  -. +oo  e.  CC
8 recn 8132 . . 3  |-  ( +oo  e.  RR  -> +oo  e.  CC )
97, 8mto 666 . 2  |-  -. +oo  e.  RR
109nelir 2498 1  |- +oo  e/  RR
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 2200    e/ wnel 2495   _Vcvv 2799   ~Pcpw 3649   U.cuni 3888   CCcc 7997   RRcr 7998   +oocpnf 8178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-un 4524  ax-cnex 8090  ax-resscn 8091
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-nel 2496  df-rex 2514  df-rab 2517  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651  df-uni 3889  df-pnf 8183
This theorem is referenced by:  renepnf  8194  nn0nepnf  9440  xrltnr  9975  pnfnlt  9983  xnn0lenn0nn0  10061  inftonninf  10664  pcgcd1  12851  pc2dvds  12853
  Copyright terms: Public domain W3C validator