![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mnfnre | Unicode version |
Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
Ref | Expression |
---|---|
mnfnre |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 7998 |
. . . . 5
![]() ![]() ![]() ![]() | |
2 | 2pwuninelg 6338 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | df-mnf 8059 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() | |
5 | df-pnf 8058 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 5 | pweqi 3606 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 4, 6 | eqtri 2214 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 7 | eleq1i 2259 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 3, 8 | mtbir 672 |
. . 3
![]() ![]() ![]() ![]() ![]() |
10 | recn 8007 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 9, 10 | mto 663 |
. 2
![]() ![]() ![]() ![]() ![]() |
12 | 11 | nelir 2462 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-nel 2460 df-ral 2477 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-uni 3837 df-pnf 8058 df-mnf 8059 |
This theorem is referenced by: renemnf 8070 xrltnr 9848 nltmnf 9857 |
Copyright terms: Public domain | W3C validator |