ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfnre Unicode version

Theorem mnfnre 8062
Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
mnfnre  |- -oo  e/  RR

Proof of Theorem mnfnre
StepHypRef Expression
1 cnex 7996 . . . . 5  |-  CC  e.  _V
2 2pwuninelg 6336 . . . . 5  |-  ( CC  e.  _V  ->  -.  ~P ~P U. CC  e.  CC )
31, 2ax-mp 5 . . . 4  |-  -.  ~P ~P U. CC  e.  CC
4 df-mnf 8057 . . . . . 6  |- -oo  =  ~P +oo
5 df-pnf 8056 . . . . . . 7  |- +oo  =  ~P U. CC
65pweqi 3605 . . . . . 6  |-  ~P +oo  =  ~P ~P U. CC
74, 6eqtri 2214 . . . . 5  |- -oo  =  ~P ~P U. CC
87eleq1i 2259 . . . 4  |-  ( -oo  e.  CC  <->  ~P ~P U. CC  e.  CC )
93, 8mtbir 672 . . 3  |-  -. -oo  e.  CC
10 recn 8005 . . 3  |-  ( -oo  e.  RR  -> -oo  e.  CC )
119, 10mto 663 . 2  |-  -. -oo  e.  RR
1211nelir 2462 1  |- -oo  e/  RR
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 2164    e/ wnel 2459   _Vcvv 2760   ~Pcpw 3601   U.cuni 3835   CCcc 7870   RRcr 7871   +oocpnf 8051   -oocmnf 8052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-setind 4569  ax-cnex 7963  ax-resscn 7964
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-nel 2460  df-ral 2477  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-uni 3836  df-pnf 8056  df-mnf 8057
This theorem is referenced by:  renemnf  8068  xrltnr  9845  nltmnf  9854
  Copyright terms: Public domain W3C validator