![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mnfnre | Unicode version |
Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
Ref | Expression |
---|---|
mnfnre |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 7949 |
. . . . 5
![]() ![]() ![]() ![]() | |
2 | 2pwuninelg 6298 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | df-mnf 8009 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() | |
5 | df-pnf 8008 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 5 | pweqi 3591 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 4, 6 | eqtri 2208 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 7 | eleq1i 2253 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 3, 8 | mtbir 672 |
. . 3
![]() ![]() ![]() ![]() ![]() |
10 | recn 7958 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 9, 10 | mto 663 |
. 2
![]() ![]() ![]() ![]() ![]() |
12 | 11 | nelir 2455 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-nel 2453 df-ral 2470 df-v 2751 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-uni 3822 df-pnf 8008 df-mnf 8009 |
This theorem is referenced by: renemnf 8020 xrltnr 9793 nltmnf 9802 |
Copyright terms: Public domain | W3C validator |