ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfnre Unicode version

Theorem mnfnre 8014
Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
mnfnre  |- -oo  e/  RR

Proof of Theorem mnfnre
StepHypRef Expression
1 cnex 7949 . . . . 5  |-  CC  e.  _V
2 2pwuninelg 6298 . . . . 5  |-  ( CC  e.  _V  ->  -.  ~P ~P U. CC  e.  CC )
31, 2ax-mp 5 . . . 4  |-  -.  ~P ~P U. CC  e.  CC
4 df-mnf 8009 . . . . . 6  |- -oo  =  ~P +oo
5 df-pnf 8008 . . . . . . 7  |- +oo  =  ~P U. CC
65pweqi 3591 . . . . . 6  |-  ~P +oo  =  ~P ~P U. CC
74, 6eqtri 2208 . . . . 5  |- -oo  =  ~P ~P U. CC
87eleq1i 2253 . . . 4  |-  ( -oo  e.  CC  <->  ~P ~P U. CC  e.  CC )
93, 8mtbir 672 . . 3  |-  -. -oo  e.  CC
10 recn 7958 . . 3  |-  ( -oo  e.  RR  -> -oo  e.  CC )
119, 10mto 663 . 2  |-  -. -oo  e.  RR
1211nelir 2455 1  |- -oo  e/  RR
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 2158    e/ wnel 2452   _Vcvv 2749   ~Pcpw 3587   U.cuni 3821   CCcc 7823   RRcr 7824   +oocpnf 8003   -oocmnf 8004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169  ax-setind 4548  ax-cnex 7916  ax-resscn 7917
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-nel 2453  df-ral 2470  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-uni 3822  df-pnf 8008  df-mnf 8009
This theorem is referenced by:  renemnf  8020  xrltnr  9793  nltmnf  9802
  Copyright terms: Public domain W3C validator