ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfnre Unicode version

Theorem mnfnre 8002
Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
mnfnre  |- -oo  e/  RR

Proof of Theorem mnfnre
StepHypRef Expression
1 cnex 7937 . . . . 5  |-  CC  e.  _V
2 2pwuninelg 6286 . . . . 5  |-  ( CC  e.  _V  ->  -.  ~P ~P U. CC  e.  CC )
31, 2ax-mp 5 . . . 4  |-  -.  ~P ~P U. CC  e.  CC
4 df-mnf 7997 . . . . . 6  |- -oo  =  ~P +oo
5 df-pnf 7996 . . . . . . 7  |- +oo  =  ~P U. CC
65pweqi 3581 . . . . . 6  |-  ~P +oo  =  ~P ~P U. CC
74, 6eqtri 2198 . . . . 5  |- -oo  =  ~P ~P U. CC
87eleq1i 2243 . . . 4  |-  ( -oo  e.  CC  <->  ~P ~P U. CC  e.  CC )
93, 8mtbir 671 . . 3  |-  -. -oo  e.  CC
10 recn 7946 . . 3  |-  ( -oo  e.  RR  -> -oo  e.  CC )
119, 10mto 662 . 2  |-  -. -oo  e.  RR
1211nelir 2445 1  |- -oo  e/  RR
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 2148    e/ wnel 2442   _Vcvv 2739   ~Pcpw 3577   U.cuni 3811   CCcc 7811   RRcr 7812   +oocpnf 7991   -oocmnf 7992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-setind 4538  ax-cnex 7904  ax-resscn 7905
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-nel 2443  df-ral 2460  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-uni 3812  df-pnf 7996  df-mnf 7997
This theorem is referenced by:  renemnf  8008  xrltnr  9781  nltmnf  9790
  Copyright terms: Public domain W3C validator