![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pnfxr | Unicode version |
Description: Plus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) |
Ref | Expression |
---|---|
pnfxr |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 3323 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | df-pnf 8056 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | cnex 7996 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
4 | 3 | uniex 4468 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() |
5 | 4 | pwex 4212 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
6 | 2, 5 | eqeltri 2266 |
. . . 4
![]() ![]() ![]() ![]() |
7 | 6 | prid1 3724 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 1, 7 | sselii 3176 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | df-xr 8058 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 8, 9 | eleqtrri 2269 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-un 4464 ax-cnex 7963 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-pnf 8056 df-xr 8058 |
This theorem is referenced by: pnfex 8073 pnfnemnf 8074 xnn0xr 9308 xrltnr 9845 ltpnf 9846 mnfltpnf 9851 pnfnlt 9853 pnfge 9855 xrlttri3 9863 xnn0dcle 9868 nltpnft 9880 xgepnf 9882 xrrebnd 9885 xrre 9886 xrre2 9887 xnegcl 9898 xaddf 9910 xaddval 9911 xaddpnf1 9912 xaddpnf2 9913 pnfaddmnf 9916 mnfaddpnf 9917 xrex 9922 xaddass2 9936 xltadd1 9942 xlt2add 9946 xsubge0 9947 xposdif 9948 xleaddadd 9953 elioc2 10002 elico2 10003 elicc2 10004 ioomax 10014 iccmax 10015 ioopos 10016 elioopnf 10033 elicopnf 10035 unirnioo 10039 elxrge0 10044 dfrp2 10332 elicore 10335 xqltnle 10336 hashinfom 10849 rexico 11365 xrmaxiflemcl 11388 xrmaxadd 11404 fprodge0 11780 fprodge1 11782 pcxcl 12449 pc2dvds 12468 pcadd 12478 xblpnfps 14566 xblpnf 14567 xblss2ps 14572 blssec 14606 blpnfctr 14607 reopnap 14706 blssioo 14713 |
Copyright terms: Public domain | W3C validator |