| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pnfxr | Unicode version | ||
| Description: Plus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) |
| Ref | Expression |
|---|---|
| pnfxr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 3345 |
. . 3
| |
| 2 | df-pnf 8144 |
. . . . 5
| |
| 3 | cnex 8084 |
. . . . . . 7
| |
| 4 | 3 | uniex 4502 |
. . . . . 6
|
| 5 | 4 | pwex 4243 |
. . . . 5
|
| 6 | 2, 5 | eqeltri 2280 |
. . . 4
|
| 7 | 6 | prid1 3749 |
. . 3
|
| 8 | 1, 7 | sselii 3198 |
. 2
|
| 9 | df-xr 8146 |
. 2
| |
| 10 | 8, 9 | eleqtrri 2283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-un 4498 ax-cnex 8051 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-pnf 8144 df-xr 8146 |
| This theorem is referenced by: pnfex 8161 pnfnemnf 8162 xnn0xr 9398 xrltnr 9936 ltpnf 9937 mnfltpnf 9942 pnfnlt 9944 pnfge 9946 xrlttri3 9954 xnn0dcle 9959 nltpnft 9971 xgepnf 9973 xrrebnd 9976 xrre 9977 xrre2 9978 xnegcl 9989 xaddf 10001 xaddval 10002 xaddpnf1 10003 xaddpnf2 10004 pnfaddmnf 10007 mnfaddpnf 10008 xrex 10013 xaddass2 10027 xltadd1 10033 xlt2add 10037 xsubge0 10038 xposdif 10039 xleaddadd 10044 elioc2 10093 elico2 10094 elicc2 10095 ioomax 10105 iccmax 10106 ioopos 10107 elioopnf 10124 elicopnf 10126 unirnioo 10130 elxrge0 10135 dfrp2 10443 elicore 10446 xqltnle 10447 hashinfom 10960 rexico 11647 xrmaxiflemcl 11671 xrmaxadd 11687 fprodge0 12063 fprodge1 12065 pcxcl 12749 pc2dvds 12768 pcadd 12778 xblpnfps 14985 xblpnf 14986 xblss2ps 14991 blssec 15025 blpnfctr 15026 reopnap 15133 blssioo 15140 |
| Copyright terms: Public domain | W3C validator |