| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pnfxr | Unicode version | ||
| Description: Plus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) |
| Ref | Expression |
|---|---|
| pnfxr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 3328 |
. . 3
| |
| 2 | df-pnf 8080 |
. . . . 5
| |
| 3 | cnex 8020 |
. . . . . . 7
| |
| 4 | 3 | uniex 4473 |
. . . . . 6
|
| 5 | 4 | pwex 4217 |
. . . . 5
|
| 6 | 2, 5 | eqeltri 2269 |
. . . 4
|
| 7 | 6 | prid1 3729 |
. . 3
|
| 8 | 1, 7 | sselii 3181 |
. 2
|
| 9 | df-xr 8082 |
. 2
| |
| 10 | 8, 9 | eleqtrri 2272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-un 4469 ax-cnex 7987 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-pnf 8080 df-xr 8082 |
| This theorem is referenced by: pnfex 8097 pnfnemnf 8098 xnn0xr 9334 xrltnr 9871 ltpnf 9872 mnfltpnf 9877 pnfnlt 9879 pnfge 9881 xrlttri3 9889 xnn0dcle 9894 nltpnft 9906 xgepnf 9908 xrrebnd 9911 xrre 9912 xrre2 9913 xnegcl 9924 xaddf 9936 xaddval 9937 xaddpnf1 9938 xaddpnf2 9939 pnfaddmnf 9942 mnfaddpnf 9943 xrex 9948 xaddass2 9962 xltadd1 9968 xlt2add 9972 xsubge0 9973 xposdif 9974 xleaddadd 9979 elioc2 10028 elico2 10029 elicc2 10030 ioomax 10040 iccmax 10041 ioopos 10042 elioopnf 10059 elicopnf 10061 unirnioo 10065 elxrge0 10070 dfrp2 10370 elicore 10373 xqltnle 10374 hashinfom 10887 rexico 11403 xrmaxiflemcl 11427 xrmaxadd 11443 fprodge0 11819 fprodge1 11821 pcxcl 12505 pc2dvds 12524 pcadd 12534 xblpnfps 14718 xblpnf 14719 xblss2ps 14724 blssec 14758 blpnfctr 14759 reopnap 14866 blssioo 14873 |
| Copyright terms: Public domain | W3C validator |