![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pnfxr | Unicode version |
Description: Plus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) |
Ref | Expression |
---|---|
pnfxr |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 3206 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | df-pnf 7726 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | cnex 7668 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
4 | 3 | uniex 4319 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() |
5 | 4 | pwex 4067 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
6 | 2, 5 | eqeltri 2187 |
. . . 4
![]() ![]() ![]() ![]() |
7 | 6 | prid1 3595 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 1, 7 | sselii 3060 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | df-xr 7728 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 8, 9 | eleqtrri 2190 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-un 4315 ax-cnex 7636 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-rex 2396 df-v 2659 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-uni 3703 df-pnf 7726 df-xr 7728 |
This theorem is referenced by: pnfex 7743 pnfnemnf 7744 xnn0xr 8949 xrltnr 9459 ltpnf 9460 mnfltpnf 9464 pnfnlt 9466 pnfge 9468 xrlttri3 9476 nltpnft 9490 xgepnf 9492 xrrebnd 9495 xrre 9496 xrre2 9497 xnegcl 9508 xaddf 9520 xaddval 9521 xaddpnf1 9522 xaddpnf2 9523 pnfaddmnf 9526 mnfaddpnf 9527 xrex 9532 xaddass2 9546 xltadd1 9552 xlt2add 9556 xsubge0 9557 xposdif 9558 xleaddadd 9563 elioc2 9612 elico2 9613 elicc2 9614 ioomax 9624 iccmax 9625 ioopos 9626 elioopnf 9643 elicopnf 9645 unirnioo 9649 elxrge0 9654 hashinfom 10417 rexico 10885 xrmaxiflemcl 10906 xrmaxadd 10922 xblpnfps 12387 xblpnf 12388 xblss2ps 12393 blssec 12427 blpnfctr 12428 blssioo 12531 |
Copyright terms: Public domain | W3C validator |