| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pnfxr | Unicode version | ||
| Description: Plus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) |
| Ref | Expression |
|---|---|
| pnfxr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 3368 |
. . 3
| |
| 2 | df-pnf 8179 |
. . . . 5
| |
| 3 | cnex 8119 |
. . . . . . 7
| |
| 4 | 3 | uniex 4527 |
. . . . . 6
|
| 5 | 4 | pwex 4266 |
. . . . 5
|
| 6 | 2, 5 | eqeltri 2302 |
. . . 4
|
| 7 | 6 | prid1 3772 |
. . 3
|
| 8 | 1, 7 | sselii 3221 |
. 2
|
| 9 | df-xr 8181 |
. 2
| |
| 10 | 8, 9 | eleqtrri 2305 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-un 4523 ax-cnex 8086 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-pnf 8179 df-xr 8181 |
| This theorem is referenced by: pnfex 8196 pnfnemnf 8197 xnn0xr 9433 xrltnr 9971 ltpnf 9972 mnfltpnf 9977 pnfnlt 9979 pnfge 9981 xrlttri3 9989 xnn0dcle 9994 nltpnft 10006 xgepnf 10008 xrrebnd 10011 xrre 10012 xrre2 10013 xnegcl 10024 xaddf 10036 xaddval 10037 xaddpnf1 10038 xaddpnf2 10039 pnfaddmnf 10042 mnfaddpnf 10043 xrex 10048 xaddass2 10062 xltadd1 10068 xlt2add 10072 xsubge0 10073 xposdif 10074 xleaddadd 10079 elioc2 10128 elico2 10129 elicc2 10130 ioomax 10140 iccmax 10141 ioopos 10142 elioopnf 10159 elicopnf 10161 unirnioo 10165 elxrge0 10170 dfrp2 10478 elicore 10481 xqltnle 10482 hashinfom 10995 rexico 11727 xrmaxiflemcl 11751 xrmaxadd 11767 fprodge0 12143 fprodge1 12145 pcxcl 12829 pc2dvds 12848 pcadd 12858 xblpnfps 15066 xblpnf 15067 xblss2ps 15072 blssec 15106 blpnfctr 15107 reopnap 15214 blssioo 15221 |
| Copyright terms: Public domain | W3C validator |