| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pnfxr | Unicode version | ||
| Description: Plus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) |
| Ref | Expression |
|---|---|
| pnfxr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 3336 |
. . 3
| |
| 2 | df-pnf 8108 |
. . . . 5
| |
| 3 | cnex 8048 |
. . . . . . 7
| |
| 4 | 3 | uniex 4483 |
. . . . . 6
|
| 5 | 4 | pwex 4226 |
. . . . 5
|
| 6 | 2, 5 | eqeltri 2277 |
. . . 4
|
| 7 | 6 | prid1 3738 |
. . 3
|
| 8 | 1, 7 | sselii 3189 |
. 2
|
| 9 | df-xr 8110 |
. 2
| |
| 10 | 8, 9 | eleqtrri 2280 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-un 4479 ax-cnex 8015 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-uni 3850 df-pnf 8108 df-xr 8110 |
| This theorem is referenced by: pnfex 8125 pnfnemnf 8126 xnn0xr 9362 xrltnr 9900 ltpnf 9901 mnfltpnf 9906 pnfnlt 9908 pnfge 9910 xrlttri3 9918 xnn0dcle 9923 nltpnft 9935 xgepnf 9937 xrrebnd 9940 xrre 9941 xrre2 9942 xnegcl 9953 xaddf 9965 xaddval 9966 xaddpnf1 9967 xaddpnf2 9968 pnfaddmnf 9971 mnfaddpnf 9972 xrex 9977 xaddass2 9991 xltadd1 9997 xlt2add 10001 xsubge0 10002 xposdif 10003 xleaddadd 10008 elioc2 10057 elico2 10058 elicc2 10059 ioomax 10069 iccmax 10070 ioopos 10071 elioopnf 10088 elicopnf 10090 unirnioo 10094 elxrge0 10099 dfrp2 10404 elicore 10407 xqltnle 10408 hashinfom 10921 rexico 11503 xrmaxiflemcl 11527 xrmaxadd 11543 fprodge0 11919 fprodge1 11921 pcxcl 12605 pc2dvds 12624 pcadd 12634 xblpnfps 14841 xblpnf 14842 xblss2ps 14847 blssec 14881 blpnfctr 14882 reopnap 14989 blssioo 14996 |
| Copyright terms: Public domain | W3C validator |