![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pnfxr | Unicode version |
Description: Plus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) |
Ref | Expression |
---|---|
pnfxr |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 3324 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | df-pnf 8058 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | cnex 7998 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
4 | 3 | uniex 4469 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() |
5 | 4 | pwex 4213 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
6 | 2, 5 | eqeltri 2266 |
. . . 4
![]() ![]() ![]() ![]() |
7 | 6 | prid1 3725 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 1, 7 | sselii 3177 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | df-xr 8060 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 8, 9 | eleqtrri 2269 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-un 4465 ax-cnex 7965 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-uni 3837 df-pnf 8058 df-xr 8060 |
This theorem is referenced by: pnfex 8075 pnfnemnf 8076 xnn0xr 9311 xrltnr 9848 ltpnf 9849 mnfltpnf 9854 pnfnlt 9856 pnfge 9858 xrlttri3 9866 xnn0dcle 9871 nltpnft 9883 xgepnf 9885 xrrebnd 9888 xrre 9889 xrre2 9890 xnegcl 9901 xaddf 9913 xaddval 9914 xaddpnf1 9915 xaddpnf2 9916 pnfaddmnf 9919 mnfaddpnf 9920 xrex 9925 xaddass2 9939 xltadd1 9945 xlt2add 9949 xsubge0 9950 xposdif 9951 xleaddadd 9956 elioc2 10005 elico2 10006 elicc2 10007 ioomax 10017 iccmax 10018 ioopos 10019 elioopnf 10036 elicopnf 10038 unirnioo 10042 elxrge0 10047 dfrp2 10335 elicore 10338 xqltnle 10339 hashinfom 10852 rexico 11368 xrmaxiflemcl 11391 xrmaxadd 11407 fprodge0 11783 fprodge1 11785 pcxcl 12452 pc2dvds 12471 pcadd 12481 xblpnfps 14577 xblpnf 14578 xblss2ps 14583 blssec 14617 blpnfctr 14618 reopnap 14725 blssioo 14732 |
Copyright terms: Public domain | W3C validator |