| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pnfxr | Unicode version | ||
| Description: Plus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) |
| Ref | Expression |
|---|---|
| pnfxr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 3337 |
. . 3
| |
| 2 | df-pnf 8109 |
. . . . 5
| |
| 3 | cnex 8049 |
. . . . . . 7
| |
| 4 | 3 | uniex 4484 |
. . . . . 6
|
| 5 | 4 | pwex 4227 |
. . . . 5
|
| 6 | 2, 5 | eqeltri 2278 |
. . . 4
|
| 7 | 6 | prid1 3739 |
. . 3
|
| 8 | 1, 7 | sselii 3190 |
. 2
|
| 9 | df-xr 8111 |
. 2
| |
| 10 | 8, 9 | eleqtrri 2281 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-un 4480 ax-cnex 8016 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-pnf 8109 df-xr 8111 |
| This theorem is referenced by: pnfex 8126 pnfnemnf 8127 xnn0xr 9363 xrltnr 9901 ltpnf 9902 mnfltpnf 9907 pnfnlt 9909 pnfge 9911 xrlttri3 9919 xnn0dcle 9924 nltpnft 9936 xgepnf 9938 xrrebnd 9941 xrre 9942 xrre2 9943 xnegcl 9954 xaddf 9966 xaddval 9967 xaddpnf1 9968 xaddpnf2 9969 pnfaddmnf 9972 mnfaddpnf 9973 xrex 9978 xaddass2 9992 xltadd1 9998 xlt2add 10002 xsubge0 10003 xposdif 10004 xleaddadd 10009 elioc2 10058 elico2 10059 elicc2 10060 ioomax 10070 iccmax 10071 ioopos 10072 elioopnf 10089 elicopnf 10091 unirnioo 10095 elxrge0 10100 dfrp2 10406 elicore 10409 xqltnle 10410 hashinfom 10923 rexico 11532 xrmaxiflemcl 11556 xrmaxadd 11572 fprodge0 11948 fprodge1 11950 pcxcl 12634 pc2dvds 12653 pcadd 12663 xblpnfps 14870 xblpnf 14871 xblss2ps 14876 blssec 14910 blpnfctr 14911 reopnap 15018 blssioo 15025 |
| Copyright terms: Public domain | W3C validator |