HomeHome Intuitionistic Logic Explorer
Theorem List (p. 143 of 165)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 14201-14300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsubrgintm 14201* The intersection of an inhabited collection of subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.)
 |-  ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S )  ->  |^| S  e.  (SubRing `  R ) )
 
Theoremsubrgin 14202 The intersection of two subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.)
 |-  ( ( A  e.  (SubRing `  R )  /\  B  e.  (SubRing `  R ) )  ->  ( A  i^i  B )  e.  (SubRing `  R )
 )
 
Theoremsubsubrg 14203 A subring of a subring is a subring. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |-  S  =  ( Rs  A )   =>    |-  ( A  e.  (SubRing `  R )  ->  ( B  e.  (SubRing `  S ) 
 <->  ( B  e.  (SubRing `  R )  /\  B  C_  A ) ) )
 
Theoremsubsubrg2 14204 The set of subrings of a subring are the smaller subrings. (Contributed by Stefan O'Rear, 9-Mar-2015.)
 |-  S  =  ( Rs  A )   =>    |-  ( A  e.  (SubRing `  R )  ->  (SubRing `  S )  =  ( (SubRing `  R )  i^i  ~P A ) )
 
Theoremissubrg3 14205 A subring is an additive subgroup which is also a multiplicative submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  M  =  (mulGrp `  R )   =>    |-  ( R  e.  Ring  ->  ( S  e.  (SubRing `  R )  <->  ( S  e.  (SubGrp `  R )  /\  S  e.  (SubMnd `  M ) ) ) )
 
Theoremresrhm 14206 Restriction of a ring homomorphism to a subring is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015.)
 |-  U  =  ( Ss  X )   =>    |-  ( ( F  e.  ( S RingHom  T )  /\  X  e.  (SubRing `  S ) )  ->  ( F  |`  X )  e.  ( U RingHom  T ) )
 
Theoremresrhm2b 14207 Restriction of the codomain of a (ring) homomorphism. resghm2b 13794 analog. (Contributed by SN, 7-Feb-2025.)
 |-  U  =  ( Ts  X )   =>    |-  ( ( X  e.  (SubRing `  T )  /\  ran 
 F  C_  X )  ->  ( F  e.  ( S RingHom  T )  <->  F  e.  ( S RingHom  U ) ) )
 
Theoremrhmeql 14208 The equalizer of two ring homomorphisms is a subring. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
 |-  ( ( F  e.  ( S RingHom  T )  /\  G  e.  ( S RingHom  T ) )  ->  dom  ( F  i^i  G )  e.  (SubRing `  S )
 )
 
Theoremrhmima 14209 The homomorphic image of a subring is a subring. (Contributed by Stefan O'Rear, 10-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
 |-  ( ( F  e.  ( M RingHom  N )  /\  X  e.  (SubRing `  M ) )  ->  ( F
 " X )  e.  (SubRing `  N )
 )
 
Theoremrnrhmsubrg 14210 The range of a ring homomorphism is a subring. (Contributed by SN, 18-Nov-2023.)
 |-  ( F  e.  ( M RingHom  N )  ->  ran  F  e.  (SubRing `  N )
 )
 
Theoremsubrgpropd 14211* If two structures have the same group components (properties), they have the same set of subrings. (Contributed by Mario Carneiro, 9-Feb-2015.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( .r `  K ) y )  =  ( x ( .r `  L ) y ) )   =>    |-  ( ph  ->  (SubRing `  K )  =  (SubRing `  L ) )
 
Theoremrhmpropd 14212* Ring homomorphism depends only on the ring attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.)
 |-  ( ph  ->  B  =  ( Base `  J )
 )   &    |-  ( ph  ->  C  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ph  ->  C  =  ( Base `  M )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  J )
 y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  C )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  M ) y ) )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( .r `  J ) y )  =  ( x ( .r `  L ) y ) )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  C ) )  ->  ( x ( .r `  K ) y )  =  ( x ( .r
 `  M ) y ) )   =>    |-  ( ph  ->  ( J RingHom  K )  =  ( L RingHom  M ) )
 
7.3.12  Left regular elements and domains
 
Syntaxcrlreg 14213 Set of left-regular elements in a ring.
 class RLReg
 
Syntaxcdomn 14214 Class of (ring theoretic) domains.
 class Domn
 
Syntaxcidom 14215 Class of integral domains.
 class IDomn
 
Definitiondf-rlreg 14216* Define the set of left-regular elements in a ring as those elements which are not left zero divisors, meaning that multiplying a nonzero element on the left by a left-regular element gives a nonzero product. (Contributed by Stefan O'Rear, 22-Mar-2015.)
 |- RLReg  =  ( r  e.  _V  |->  { x  e.  ( Base `  r )  |  A. y  e.  ( Base `  r ) ( ( x ( .r `  r ) y )  =  ( 0g `  r )  ->  y  =  ( 0g `  r
 ) ) } )
 
Definitiondf-domn 14217* A domain is a nonzero ring in which there are no nontrivial zero divisors. (Contributed by Mario Carneiro, 28-Mar-2015.)
 |- Domn  =  { r  e. NzRing  |  [. ( Base `  r )  /  b ]. [. ( 0g `  r )  /  z ]. A. x  e.  b  A. y  e.  b  ( ( x ( .r `  r
 ) y )  =  z  ->  ( x  =  z  \/  y  =  z ) ) }
 
Definitiondf-idom 14218 An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.)
 |- IDomn  =  ( CRing  i^i Domn )
 
Theoremrrgmex 14219 A structure whose set of left-regular elements is inhabited is a set. (Contributed by Jim Kingdon, 12-Aug-2025.)
 |-  E  =  (RLReg `  R )   =>    |-  ( A  e.  E  ->  R  e.  _V )
 
Theoremrrgval 14220* Value of the set or left-regular elements in a ring. (Contributed by Stefan O'Rear, 22-Mar-2015.)
 |-  E  =  (RLReg `  R )   &    |-  B  =  (
 Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  E  =  { x  e.  B  |  A. y  e.  B  ( ( x 
 .x.  y )  =  .0.  ->  y  =  .0.  ) }
 
Theoremisrrg 14221* Membership in the set of left-regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015.)
 |-  E  =  (RLReg `  R )   &    |-  B  =  (
 Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( X  e.  E  <->  ( X  e.  B  /\  A. y  e.  B  ( ( X  .x.  y
 )  =  .0.  ->  y  =  .0.  ) ) )
 
Theoremrrgeq0i 14222 Property of a left-regular element. (Contributed by Stefan O'Rear, 22-Mar-2015.)
 |-  E  =  (RLReg `  R )   &    |-  B  =  (
 Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ( X  e.  E  /\  Y  e.  B )  ->  ( ( X 
 .x.  Y )  =  .0. 
 ->  Y  =  .0.  )
 )
 
Theoremrrgeq0 14223 Left-multiplication by a left regular element does not change zeroness. (Contributed by Stefan O'Rear, 28-Mar-2015.)
 |-  E  =  (RLReg `  R )   &    |-  B  =  (
 Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ( R  e.  Ring  /\  X  e.  E  /\  Y  e.  B )  ->  ( ( X  .x.  Y )  =  .0.  <->  Y  =  .0.  ) )
 
Theoremrrgss 14224 Left-regular elements are a subset of the base set. (Contributed by Stefan O'Rear, 22-Mar-2015.)
 |-  E  =  (RLReg `  R )   &    |-  B  =  (
 Base `  R )   =>    |-  E  C_  B
 
Theoremunitrrg 14225 Units are regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015.)
 |-  E  =  (RLReg `  R )   &    |-  U  =  (Unit `  R )   =>    |-  ( R  e.  Ring  ->  U  C_  E )
 
Theoremrrgnz 14226 In a nonzero ring, the zero is a left zero divisor (that is, not a left-regular element). (Contributed by Thierry Arnoux, 6-May-2025.)
 |-  E  =  (RLReg `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( R  e. NzRing  ->  -.  .0.  e.  E )
 
Theoremisdomn 14227* Expand definition of a domain. (Contributed by Mario Carneiro, 28-Mar-2015.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( R  e. Domn  <->  ( R  e. NzRing  /\ 
 A. x  e.  B  A. y  e.  B  ( ( x  .x.  y
 )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
 ) ) )
 
Theoremdomnnzr 14228 A domain is a nonzero ring. (Contributed by Mario Carneiro, 28-Mar-2015.)
 |-  ( R  e. Domn  ->  R  e. NzRing )
 
Theoremdomnring 14229 A domain is a ring. (Contributed by Mario Carneiro, 28-Mar-2015.)
 |-  ( R  e. Domn  ->  R  e.  Ring )
 
Theoremdomneq0 14230 In a domain, a product is zero iff it has a zero factor. (Contributed by Mario Carneiro, 28-Mar-2015.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .x.  Y )  =  .0.  <->  ( X  =  .0.  \/  Y  =  .0.  ) ) )
 
Theoremdomnmuln0 14231 In a domain, a product of nonzero elements is nonzero. (Contributed by Mario Carneiro, 6-May-2015.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ( R  e. Domn  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/=  .0.  )
 )  ->  ( X  .x.  Y )  =/=  .0.  )
 
Theoremopprdomnbg 14232 A class is a domain if and only if its opposite is a domain, biconditional form of opprdomn 14233. (Contributed by SN, 15-Jun-2015.)
 |-  O  =  (oppr `  R )   =>    |-  ( R  e.  V  ->  ( R  e. Domn  <->  O  e. Domn ) )
 
Theoremopprdomn 14233 The opposite of a domain is also a domain. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  O  =  (oppr `  R )   =>    |-  ( R  e. Domn  ->  O  e. Domn )
 
Theoremisidom 14234 An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.)
 |-  ( R  e. IDomn  <->  ( R  e.  CRing  /\  R  e. Domn ) )
 
Theoremidomdomd 14235 An integral domain is a domain. (Contributed by Thierry Arnoux, 22-Mar-2025.)
 |-  ( ph  ->  R  e. IDomn )   =>    |-  ( ph  ->  R  e. Domn )
 
Theoremidomcringd 14236 An integral domain is a commutative ring with unity. (Contributed by Thierry Arnoux, 4-May-2025.) (Proof shortened by SN, 14-May-2025.)
 |-  ( ph  ->  R  e. IDomn )   =>    |-  ( ph  ->  R  e.  CRing )
 
Theoremidomringd 14237 An integral domain is a ring. (Contributed by Thierry Arnoux, 22-Mar-2025.)
 |-  ( ph  ->  R  e. IDomn )   =>    |-  ( ph  ->  R  e.  Ring )
 
7.4  Division rings and fields
 
7.4.1  Ring apartness
 
Syntaxcapr 14238 Extend class notation with ring apartness.
 class #r
 
Definitiondf-apr 14239* The relation between elements whose difference is invertible, which for a local ring is an apartness relation by aprap 14244. (Contributed by Jim Kingdon, 13-Feb-2025.)
 |- #r  =  ( w  e.  _V  |->  {
 <. x ,  y >.  |  ( ( x  e.  ( Base `  w )  /\  y  e.  ( Base `  w ) ) 
 /\  ( x (
 -g `  w )
 y )  e.  (Unit `  w ) ) }
 )
 
Theoremaprval 14240 Expand Definition df-apr 14239. (Contributed by Jim Kingdon, 17-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  R )
 )   &    |-  ( ph  -> #  =  (#r `  R ) )   &    |-  ( ph  ->  .-  =  ( -g `  R ) )   &    |-  ( ph  ->  U  =  (Unit `  R ) )   &    |-  ( ph  ->  R  e.  Ring
 )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X #  Y  <->  ( X  .-  Y )  e.  U ) )
 
Theoremaprirr 14241 The apartness relation given by df-apr 14239 for a nonzero ring is irreflexive. (Contributed by Jim Kingdon, 16-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  R )
 )   &    |-  ( ph  -> #  =  (#r `  R ) )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  ( 1r `  R )  =/=  ( 0g `  R ) )   =>    |-  ( ph  ->  -.  X #  X )
 
Theoremaprsym 14242 The apartness relation given by df-apr 14239 for a ring is symmetric. (Contributed by Jim Kingdon, 17-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  R )
 )   &    |-  ( ph  -> #  =  (#r `  R ) )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X #  Y  ->  Y #  X ) )
 
Theoremaprcotr 14243 The apartness relation given by df-apr 14239 for a local ring is cotransitive. (Contributed by Jim Kingdon, 17-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  R )
 )   &    |-  ( ph  -> #  =  (#r `  R ) )   &    |-  ( ph  ->  R  e. LRing )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ph  ->  ( X #  Y  ->  ( X #  Z  \/  Y #  Z ) ) )
 
Theoremaprap 14244 The relation given by df-apr 14239 for a local ring is an apartness relation. (Contributed by Jim Kingdon, 20-Feb-2025.)
 |-  ( R  e. LRing  ->  (#r `  R ) Ap  ( Base `  R ) )
 
7.5  Left modules
 
7.5.1  Definition and basic properties
 
Syntaxclmod 14245 Extend class notation with class of all left modules.
 class  LMod
 
Syntaxcscaf 14246 The functionalization of the scalar multiplication operation.
 class  .sf
 
Definitiondf-lmod 14247* Define the class of all left modules, which are generalizations of left vector spaces. A left module over a ring is an (Abelian) group (vectors) together with a ring (scalars) and a left scalar product connecting them. (Contributed by NM, 4-Nov-2013.)
 |- 
 LMod  =  { g  e.  Grp  |  [. ( Base `  g )  /  v ]. [. ( +g  `  g )  /  a ]. [. (Scalar `  g
 )  /  f ]. [. ( .s `  g
 )  /  s ]. [. ( Base `  f )  /  k ]. [. ( +g  `  f )  /  p ]. [. ( .r
 `  f )  /  t ]. ( f  e. 
 Ring  /\  A. q  e.  k  A. r  e.  k  A. x  e.  v  A. w  e.  v  ( ( ( r s w )  e.  v  /\  (
 r s ( w a x ) )  =  ( ( r s w ) a ( r s x ) )  /\  (
 ( q p r ) s w )  =  ( ( q s w ) a ( r s w ) ) )  /\  ( ( ( q t r ) s w )  =  ( q s ( r s w ) ) 
 /\  ( ( 1r
 `  f ) s w )  =  w ) ) ) }
 
Definitiondf-scaf 14248* Define the functionalization of the 
.s operator. This restricts the value of  .s to the stated domain, which is necessary when working with restricted structures, whose operations may be defined on a larger set than the true base. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |- 
 .sf  =  ( g  e.  _V  |->  ( x  e.  ( Base `  (Scalar `  g )
 ) ,  y  e.  ( Base `  g )  |->  ( x ( .s
 `  g ) y ) ) )
 
Theoremislmod 14249* The predicate "is a left module". (Contributed by NM, 4-Nov-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  .+^  =  ( +g  `  F )   &    |-  .X.  =  ( .r `  F )   &    |-  .1.  =  ( 1r `  F )   =>    |-  ( W  e.  LMod  <->  ( W  e.  Grp  /\  F  e.  Ring  /\  A. q  e.  K  A. r  e.  K  A. x  e.  V  A. w  e.  V  ( ( ( r  .x.  w )  e.  V  /\  ( r 
 .x.  ( w  .+  x ) )  =  ( ( r  .x.  w )  .+  ( r 
 .x.  x ) ) 
 /\  ( ( q  .+^  r )  .x.  w )  =  ( (
 q  .x.  w )  .+  ( r  .x.  w ) ) )  /\  ( ( ( q 
 .X.  r )  .x.  w )  =  (
 q  .x.  ( r  .x.  w ) )  /\  (  .1.  .x.  w )  =  w ) ) ) )
 
Theoremlmodlema 14250 Lemma for properties of a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  .+^  =  ( +g  `  F )   &    |-  .X.  =  ( .r `  F )   &    |-  .1.  =  ( 1r `  F )   =>    |-  ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K ) 
 /\  ( X  e.  V  /\  Y  e.  V ) )  ->  ( ( ( R  .x.  Y )  e.  V  /\  ( R  .x.  ( Y 
 .+  X ) )  =  ( ( R 
 .x.  Y )  .+  ( R  .x.  X ) ) 
 /\  ( ( Q  .+^  R )  .x.  Y )  =  ( ( Q  .x.  Y )  .+  ( R  .x.  Y ) ) )  /\  (
 ( ( Q  .X.  R )  .x.  Y )  =  ( Q  .x.  ( R  .x.  Y ) ) 
 /\  (  .1.  .x.  Y )  =  Y ) ) )
 
Theoremislmodd 14251* Properties that determine a left module. See note in isgrpd2 13549 regarding the  ph on hypotheses that name structure components. (Contributed by Mario Carneiro, 22-Jun-2014.)
 |-  ( ph  ->  V  =  ( Base `  W )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  W )
 )   &    |-  ( ph  ->  F  =  (Scalar `  W )
 )   &    |-  ( ph  ->  .x.  =  ( .s `  W ) )   &    |-  ( ph  ->  B  =  ( Base `  F ) )   &    |-  ( ph  ->  .+^  =  ( +g  `  F ) )   &    |-  ( ph  ->  .X. 
 =  ( .r `  F ) )   &    |-  ( ph  ->  .1.  =  ( 1r `  F ) )   &    |-  ( ph  ->  F  e.  Ring
 )   &    |-  ( ph  ->  W  e.  Grp )   &    |-  ( ( ph  /\  x  e.  B  /\  y  e.  V )  ->  ( x  .x.  y
 )  e.  V )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  V  /\  z  e.  V )
 )  ->  ( x  .x.  ( y  .+  z
 ) )  =  ( ( x  .x.  y
 )  .+  ( x  .x.  z ) ) )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  V )
 )  ->  ( ( x  .+^  y )  .x.  z )  =  (
 ( x  .x.  z
 )  .+  ( y  .x.  z ) ) )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  V )
 )  ->  ( ( x  .X.  y )  .x.  z )  =  ( x  .x.  ( y  .x.  z ) ) )   &    |-  ( ( ph  /\  x  e.  V )  ->  (  .1.  .x.  x )  =  x )   =>    |-  ( ph  ->  W  e.  LMod )
 
Theoremlmodgrp 14252 A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.)
 |-  ( W  e.  LMod  ->  W  e.  Grp )
 
Theoremlmodring 14253 The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  F  =  (Scalar `  W )   =>    |-  ( W  e.  LMod  ->  F  e.  Ring )
 
Theoremlmodfgrp 14254 The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  F  =  (Scalar `  W )   =>    |-  ( W  e.  LMod  ->  F  e.  Grp )
 
Theoremlmodgrpd 14255 A left module is a group. (Contributed by SN, 16-May-2024.)
 |-  ( ph  ->  W  e.  LMod )   =>    |-  ( ph  ->  W  e.  Grp )
 
Theoremlmodbn0 14256 The base set of a left module is nonempty. It is also inhabited (by lmod0vcl 14275). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  B  =  ( Base `  W )   =>    |-  ( W  e.  LMod  ->  B  =/=  (/) )
 
Theoremlmodacl 14257 Closure of ring addition for a left module. (Contributed by NM, 14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  .+  =  ( +g  `  F )   =>    |-  ( ( W  e.  LMod  /\  X  e.  K  /\  Y  e.  K )  ->  ( X  .+  Y )  e.  K )
 
Theoremlmodmcl 14258 Closure of ring multiplication for a left module. (Contributed by NM, 14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  .x.  =  ( .r `  F )   =>    |-  ( ( W  e.  LMod  /\  X  e.  K  /\  Y  e.  K )  ->  ( X  .x.  Y )  e.  K )
 
Theoremlmodsn0 14259 The set of scalars in a left module is nonempty. It is also inhabited, by lmod0cl 14272. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  F  =  (Scalar `  W )   &    |-  B  =  ( Base `  F )   =>    |-  ( W  e.  LMod  ->  B  =/=  (/) )
 
Theoremlmodvacl 14260 Closure of vector addition for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  Y )  e.  V )
 
Theoremlmodass 14261 Left module vector sum is associative. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   =>    |-  ( ( W  e.  LMod  /\  ( X  e.  V  /\  Y  e.  V  /\  Z  e.  V ) )  ->  ( ( X  .+  Y )  .+  Z )  =  ( X  .+  ( Y  .+  Z ) ) )
 
Theoremlmodlcan 14262 Left cancellation law for vector sum. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   =>    |-  ( ( W  e.  LMod  /\  ( X  e.  V  /\  Y  e.  V  /\  Z  e.  V ) )  ->  ( ( Z  .+  X )  =  ( Z  .+  Y )  <->  X  =  Y ) )
 
Theoremlmodvscl 14263 Closure of scalar product for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  K  =  ( Base `  F )   =>    |-  (
 ( W  e.  LMod  /\  R  e.  K  /\  X  e.  V )  ->  ( R  .x.  X )  e.  V )
 
Theoremscaffvalg 14264* The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
 |-  B  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  (
 Base `  F )   &    |-  .xb  =  ( .sf `  W )   &    |- 
 .x.  =  ( .s `  W )   =>    |-  ( W  e.  V  -> 
 .xb  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y ) ) )
 
Theoremscafvalg 14265 The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |-  B  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  (
 Base `  F )   &    |-  .xb  =  ( .sf `  W )   &    |- 
 .x.  =  ( .s `  W )   =>    |-  ( ( W  e.  V  /\  X  e.  K  /\  Y  e.  B ) 
 ->  ( X  .xb  Y )  =  ( X  .x.  Y ) )
 
Theoremscafeqg 14266 If the scalar multiplication operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |-  B  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  (
 Base `  F )   &    |-  .xb  =  ( .sf `  W )   &    |- 
 .x.  =  ( .s `  W )   =>    |-  ( ( W  e.  V  /\  .x.  Fn  ( K  X.  B ) ) 
 ->  .xb  =  .x.  )
 
Theoremscaffng 14267 The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |-  B  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  (
 Base `  F )   &    |-  .xb  =  ( .sf `  W )   =>    |-  ( W  e.  V  -> 
 .xb  Fn  ( K  X.  B ) )
 
Theoremlmodscaf 14268 The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |-  B  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  (
 Base `  F )   &    |-  .xb  =  ( .sf `  W )   =>    |-  ( W  e.  LMod  ->  .xb 
 : ( K  X.  B ) --> B )
 
Theoremlmodvsdi 14269 Distributive law for scalar product (left-distributivity). (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  F  =  (Scalar `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  K  =  ( Base `  F )   =>    |-  ( ( W  e.  LMod  /\  ( R  e.  K  /\  X  e.  V  /\  Y  e.  V )
 )  ->  ( R  .x.  ( X  .+  Y ) )  =  (
 ( R  .x.  X )  .+  ( R  .x.  Y ) ) )
 
Theoremlmodvsdir 14270 Distributive law for scalar product (right-distributivity). (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  F  =  (Scalar `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  K  =  ( Base `  F )   &    |-  .+^  =  ( +g  `  F )   =>    |-  ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K  /\  X  e.  V )
 )  ->  ( ( Q  .+^  R )  .x.  X )  =  ( ( Q  .x.  X )  .+  ( R  .x.  X ) ) )
 
Theoremlmodvsass 14271 Associative law for scalar product. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
 |-  V  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  K  =  ( Base `  F )   &    |-  .X.  =  ( .r `  F )   =>    |-  ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K  /\  X  e.  V )
 )  ->  ( ( Q  .X.  R )  .x.  X )  =  ( Q 
 .x.  ( R  .x.  X ) ) )
 
Theoremlmod0cl 14272 The ring zero in a left module belongs to the set of scalars. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  .0.  =  ( 0g `  F )   =>    |-  ( W  e.  LMod  ->  .0. 
 e.  K )
 
Theoremlmod1cl 14273 The ring unity in a left module belongs to the set of scalars. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  .1.  =  ( 1r `  F )   =>    |-  ( W  e.  LMod  ->  .1. 
 e.  K )
 
Theoremlmodvs1 14274 Scalar product with the ring unity. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  .1.  =  ( 1r `  F )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V ) 
 ->  (  .1.  .x.  X )  =  X )
 
Theoremlmod0vcl 14275 The zero vector is a vector. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .0.  =  ( 0g `  W )   =>    |-  ( W  e.  LMod  ->  .0. 
 e.  V )
 
Theoremlmod0vlid 14276 Left identity law for the zero vector. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .0.  =  ( 0g `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V ) 
 ->  (  .0.  .+  X )  =  X )
 
Theoremlmod0vrid 14277 Right identity law for the zero vector. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .0.  =  ( 0g `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V ) 
 ->  ( X  .+  .0.  )  =  X )
 
Theoremlmod0vid 14278 Identity equivalent to the value of the zero vector. Provides a convenient way to compute the value. (Contributed by NM, 9-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .0.  =  ( 0g `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V ) 
 ->  ( ( X  .+  X )  =  X  <->  .0. 
 =  X ) )
 
Theoremlmod0vs 14279 Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  O  =  ( 0g `  F )   &    |- 
 .0.  =  ( 0g `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V ) 
 ->  ( O  .x.  X )  =  .0.  )
 
Theoremlmodvs0 14280 Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  F  =  (Scalar `  W )   &    |- 
 .x.  =  ( .s `  W )   &    |-  K  =  (
 Base `  F )   &    |-  .0.  =  ( 0g `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  K ) 
 ->  ( X  .x.  .0.  )  =  .0.  )
 
Theoremlmodvsmmulgdi 14281 Distributive law for a group multiple of a scalar multiplication. (Contributed by AV, 2-Sep-2019.)
 |-  V  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  K  =  ( Base `  F )   &    |-  .^  =  (.g `  W )   &    |-  E  =  (.g `  F )   =>    |-  ( ( W  e.  LMod  /\  ( C  e.  K  /\  N  e.  NN0  /\  X  e.  V ) )  ->  ( N  .^  ( C 
 .x.  X ) )  =  ( ( N E C )  .x.  X ) )
 
Theoremlmodfopnelem1 14282 Lemma 1 for lmodfopne 14284. (Contributed by AV, 2-Oct-2021.)
 |- 
 .x.  =  ( .sf `  W )   &    |-  .+  =  ( +f `  W )   &    |-  V  =  ( Base `  W )   &    |-  S  =  (Scalar `  W )   &    |-  K  =  (
 Base `  S )   =>    |-  ( ( W  e.  LMod  /\  .+  =  .x.  )  ->  V  =  K )
 
Theoremlmodfopnelem2 14283 Lemma 2 for lmodfopne 14284. (Contributed by AV, 2-Oct-2021.)
 |- 
 .x.  =  ( .sf `  W )   &    |-  .+  =  ( +f `  W )   &    |-  V  =  ( Base `  W )   &    |-  S  =  (Scalar `  W )   &    |-  K  =  (
 Base `  S )   &    |-  .0.  =  ( 0g `  S )   &    |- 
 .1.  =  ( 1r `  S )   =>    |-  ( ( W  e.  LMod  /\  .+  =  .x.  )  ->  (  .0.  e.  V  /\  .1.  e.  V ) )
 
Theoremlmodfopne 14284 The (functionalized) operations of a left module (over a nonzero ring) cannot be identical. (Contributed by NM, 31-May-2008.) (Revised by AV, 2-Oct-2021.)
 |- 
 .x.  =  ( .sf `  W )   &    |-  .+  =  ( +f `  W )   &    |-  V  =  ( Base `  W )   &    |-  S  =  (Scalar `  W )   &    |-  K  =  (
 Base `  S )   &    |-  .0.  =  ( 0g `  S )   &    |- 
 .1.  =  ( 1r `  S )   =>    |-  ( ( W  e.  LMod  /\  .1.  =/=  .0.  )  ->  .+  =/=  .x.  )
 
Theoremlcomf 14285 A linear-combination sum is a function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
 |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  .x.  =  ( .s `  W )   &    |-  B  =  ( Base `  W )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  G : I
 --> K )   &    |-  ( ph  ->  H : I --> B )   &    |-  ( ph  ->  I  e.  V )   =>    |-  ( ph  ->  ( G  oF  .x.  H ) : I --> B )
 
Theoremlmodvnegcl 14286 Closure of vector negative. (Contributed by NM, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  N  =  ( invg `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V ) 
 ->  ( N `  X )  e.  V )
 
Theoremlmodvnegid 14287 Addition of a vector with its negative. (Contributed by NM, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .0.  =  ( 0g `  W )   &    |-  N  =  ( invg `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V ) 
 ->  ( X  .+  ( N `  X ) )  =  .0.  )
 
Theoremlmodvneg1 14288 Minus 1 times a vector is the negative of the vector. Equation 2 of [Kreyszig] p. 51. (Contributed by NM, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  N  =  ( invg `  W )   &    |-  F  =  (Scalar `  W )   &    |- 
 .x.  =  ( .s `  W )   &    |-  .1.  =  ( 1r `  F )   &    |-  M  =  ( invg `
  F )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( ( M `  .1.  )  .x.  X )  =  ( N `  X ) )
 
Theoremlmodvsneg 14289 Multiplication of a vector by a negated scalar. (Contributed by Stefan O'Rear, 28-Feb-2015.)
 |-  B  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  N  =  ( invg `  W )   &    |-  K  =  (
 Base `  F )   &    |-  M  =  ( invg `  F )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  R  e.  K )   =>    |-  ( ph  ->  ( N `  ( R  .x.  X ) )  =  ( ( M `  R )  .x.  X ) )
 
Theoremlmodvsubcl 14290 Closure of vector subtraction. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .-  =  ( -g `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .-  Y )  e.  V )
 
Theoremlmodcom 14291 Left module vector sum is commutative. (Contributed by Gérard Lang, 25-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  Y )  =  ( Y  .+  X ) )
 
Theoremlmodabl 14292 A left module is an abelian group (of vectors, under addition). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.)
 |-  ( W  e.  LMod  ->  W  e.  Abel )
 
Theoremlmodcmn 14293 A left module is a commutative monoid under addition. (Contributed by NM, 7-Jan-2015.)
 |-  ( W  e.  LMod  ->  W  e. CMnd )
 
Theoremlmodnegadd 14294 Distribute negation through addition of scalar products. (Contributed by NM, 9-Apr-2015.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  N  =  ( invg `
  W )   &    |-  R  =  (Scalar `  W )   &    |-  K  =  ( Base `  R )   &    |-  I  =  ( invg `  R )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  A  e.  K )   &    |-  ( ph  ->  B  e.  K )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   =>    |-  ( ph  ->  ( N `  ( ( A  .x.  X )  .+  ( B  .x.  Y ) ) )  =  ( ( ( I `
  A )  .x.  X )  .+  ( ( I `  B ) 
 .x.  Y ) ) )
 
Theoremlmod4 14295 Commutative/associative law for left module vector sum. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   =>    |-  ( ( W  e.  LMod  /\  ( X  e.  V  /\  Y  e.  V )  /\  ( Z  e.  V  /\  U  e.  V )
 )  ->  ( ( X  .+  Y )  .+  ( Z  .+  U ) )  =  ( ( X  .+  Z ) 
 .+  ( Y  .+  U ) ) )
 
Theoremlmodvsubadd 14296 Relationship between vector subtraction and addition. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .-  =  ( -g `  W )   =>    |-  ( ( W  e.  LMod  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
 )  ->  ( ( A  .-  B )  =  C  <->  ( B  .+  C )  =  A ) )
 
Theoremlmodvaddsub4 14297 Vector addition/subtraction law. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .-  =  ( -g `  W )   =>    |-  ( ( W  e.  LMod  /\  ( A  e.  V  /\  B  e.  V ) 
 /\  ( C  e.  V  /\  D  e.  V ) )  ->  ( ( A  .+  B )  =  ( C  .+  D )  <->  ( A  .-  C )  =  ( D  .-  B ) ) )
 
Theoremlmodvpncan 14298 Addition/subtraction cancellation law for vectors. (Contributed by NM, 16-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .-  =  ( -g `  W )   =>    |-  ( ( W  e.  LMod  /\  A  e.  V  /\  B  e.  V )  ->  ( ( A  .+  B )  .-  B )  =  A )
 
Theoremlmodvnpcan 14299 Cancellation law for vector subtraction (Contributed by NM, 19-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .-  =  ( -g `  W )   =>    |-  ( ( W  e.  LMod  /\  A  e.  V  /\  B  e.  V )  ->  ( ( A  .-  B )  .+  B )  =  A )
 
Theoremlmodvsubval2 14300 Value of vector subtraction in terms of addition. (Contributed by NM, 31-Mar-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .-  =  ( -g `  W )   &    |-  F  =  (Scalar `  W )   &    |- 
 .x.  =  ( .s `  W )   &    |-  N  =  ( invg `  F )   &    |- 
 .1.  =  ( 1r `  F )   =>    |-  ( ( W  e.  LMod  /\  A  e.  V  /\  B  e.  V )  ->  ( A  .-  B )  =  ( A  .+  ( ( N `  .1.  )  .x.  B )
 ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16411
  Copyright terms: Public domain < Previous  Next >