HomeHome Intuitionistic Logic Explorer
Theorem List (p. 143 of 159)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 14201-14300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrng2idlsubgnsg 14201 A two-sided ideal of a non-unital ring which is a subgroup of the ring is a normal subgroup of the ring. (Contributed by AV, 20-Feb-2025.)
 |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  I  e.  (2Ideal `  R ) )   &    |-  ( ph  ->  I  e.  (SubGrp `  R ) )   =>    |-  ( ph  ->  I  e.  (NrmSGrp `  R )
 )
 
Theoremrng2idlsubg0 14202 The zero (additive identity) of a non-unital ring is an element of each two-sided ideal of the ring which is a subgroup of the ring. (Contributed by AV, 20-Feb-2025.)
 |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  I  e.  (2Ideal `  R ) )   &    |-  ( ph  ->  I  e.  (SubGrp `  R ) )   =>    |-  ( ph  ->  ( 0g `  R )  e.  I )
 
Theorem2idlcpblrng 14203 The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) Generalization for non-unital rings and two-sided ideals which are subgroups of the additive group of the non-unital ring. (Revised by AV, 23-Feb-2025.)
 |-  X  =  ( Base `  R )   &    |-  E  =  ( R ~QG 
 S )   &    |-  I  =  (2Ideal `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R ) )  ->  ( ( A E C  /\  B E D )  ->  ( A  .x.  B ) E ( C 
 .x.  D ) ) )
 
Theorem2idlcpbl 14204 The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) (Proof shortened by AV, 31-Mar-2025.)
 |-  X  =  ( Base `  R )   &    |-  E  =  ( R ~QG 
 S )   &    |-  I  =  (2Ideal `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  ( ( A E C  /\  B E D )  ->  ( A  .x.  B ) E ( C  .x.  D ) ) )
 
Theoremqus2idrng 14205 The quotient of a non-unital ring modulo a two-sided ideal, which is a subgroup of the additive group of the non-unital ring, is a non-unital ring (qusring 14207 analog). (Contributed by AV, 23-Feb-2025.)
 |-  U  =  ( R 
 /.s 
 ( R ~QG  S ) )   &    |-  I  =  (2Ideal `  R )   =>    |-  (
 ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R ) )  ->  U  e. Rng )
 
Theoremqus1 14206 The multiplicative identity of the quotient ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  U  =  ( R 
 /.s 
 ( R ~QG  S ) )   &    |-  I  =  (2Ideal `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( ( R  e.  Ring  /\  S  e.  I ) 
 ->  ( U  e.  Ring  /\ 
 [  .1.  ] ( R ~QG  S )  =  ( 1r
 `  U ) ) )
 
Theoremqusring 14207 If  S is a two-sided ideal in  R, then  U  =  R  /  S is a ring, called the quotient ring of 
R by  S. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  U  =  ( R 
 /.s 
 ( R ~QG  S ) )   &    |-  I  =  (2Ideal `  R )   =>    |-  (
 ( R  e.  Ring  /\  S  e.  I ) 
 ->  U  e.  Ring )
 
Theoremqusrhm 14208* If  S is a two-sided ideal in  R, then the "natural map" from elements to their cosets is a ring homomorphism from  R to  R  /  S. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  U  =  ( R 
 /.s 
 ( R ~QG  S ) )   &    |-  I  =  (2Ideal `  R )   &    |-  X  =  ( Base `  R )   &    |-  F  =  ( x  e.  X  |->  [ x ] ( R ~QG  S ) )   =>    |-  ( ( R  e.  Ring  /\  S  e.  I ) 
 ->  F  e.  ( R RingHom  U ) )
 
Theoremqusmul2 14209 Value of the ring operation in a quotient ring. (Contributed by Thierry Arnoux, 1-Sep-2024.)
 |-  Q  =  ( R 
 /.s 
 ( R ~QG  I ) )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .X. 
 =  ( .r `  Q )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  I  e.  (2Ideal `  R ) )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( [ X ] ( R ~QG  I )  .X.  [ Y ] ( R ~QG  I )
 )  =  [ ( X  .x.  Y ) ]
 ( R ~QG  I ) )
 
Theoremcrngridl 14210 In a commutative ring, the left and right ideals coincide. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  I  =  (LIdeal `  R )   &    |-  O  =  (oppr `  R )   =>    |-  ( R  e.  CRing  ->  I  =  (LIdeal `  O ) )
 
Theoremcrng2idl 14211 In a commutative ring, a two-sided ideal is the same as a left ideal. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  I  =  (LIdeal `  R )   =>    |-  ( R  e.  CRing  ->  I  =  (2Ideal `  R ) )
 
Theoremqusmulrng 14212 Value of the multiplication operation in a quotient ring of a non-unital ring. Formerly part of proof for quscrng 14213. Similar to qusmul2 14209. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 28-Feb-2025.)
 |- 
 .~  =  ( R ~QG  S )   &    |-  H  =  ( R 
 /.s  .~  )   &    |-  B  =  (
 Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .xb 
 =  ( .r `  H )   =>    |-  ( ( ( R  e. Rng  /\  S  e.  (2Ideal `  R )  /\  S  e.  (SubGrp `  R ) )  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  ( [ X ]  .~  .xb  [ Y ]  .~  )  =  [ ( X  .x.  Y ) ]  .~  )
 
Theoremquscrng 14213 The quotient of a commutative ring by an ideal is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.) (Proof shortened by AV, 3-Apr-2025.)
 |-  U  =  ( R 
 /.s 
 ( R ~QG  S ) )   &    |-  I  =  (LIdeal `  R )   =>    |-  (
 ( R  e.  CRing  /\  S  e.  I ) 
 ->  U  e.  CRing )
 
7.6.4  Principal ideal rings. Divisibility in the integers
 
Theoremrspsn 14214* Membership in principal ideals is closely related to divisibility. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.)
 |-  B  =  ( Base `  R )   &    |-  K  =  (RSpan `  R )   &    |-  .||  =  ( ||r `  R )   =>    |-  ( ( R  e.  Ring  /\  G  e.  B ) 
 ->  ( K `  { G } )  =  { x  |  G  .||  x }
 )
 
7.7  The complex numbers as an algebraic extensible structure
 
7.7.1  Definition and basic properties
 
Syntaxcpsmet 14215 Extend class notation with the class of all pseudometric spaces.
 class PsMet
 
Syntaxcxmet 14216 Extend class notation with the class of all extended metric spaces.
 class  *Met
 
Syntaxcmet 14217 Extend class notation with the class of all metrics.
 class  Met
 
Syntaxcbl 14218 Extend class notation with the metric space ball function.
 class  ball
 
Syntaxcfbas 14219 Extend class definition to include the class of filter bases.
 class  fBas
 
Syntaxcfg 14220 Extend class definition to include the filter generating function.
 class  filGen
 
Syntaxcmopn 14221 Extend class notation with a function mapping each metric space to the family of its open sets.
 class  MetOpen
 
Syntaxcmetu 14222 Extend class notation with the function mapping metrics to the uniform structure generated by that metric.
 class metUnif
 
Definitiondf-psmet 14223* Define the set of all pseudometrics on a given base set. In a pseudo metric, two distinct points may have a distance zero. (Contributed by Thierry Arnoux, 7-Feb-2018.)
 |- PsMet  =  ( x  e.  _V  |->  { d  e.  ( RR*  ^m  ( x  X.  x ) )  |  A. y  e.  x  ( (
 y d y )  =  0  /\  A. z  e.  x  A. w  e.  x  (
 y d z ) 
 <_  ( ( w d y ) +e
 ( w d z ) ) ) }
 )
 
Definitiondf-xmet 14224* Define the set of all extended metrics on a given base set. The definition is similar to df-met 14225, but we also allow the metric to take on the value +oo. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |- 
 *Met  =  ( x  e.  _V  |->  { d  e.  ( RR*  ^m  ( x  X.  x ) )  |  A. y  e.  x  A. z  e.  x  ( ( ( y d z )  =  0  <->  y  =  z
 )  /\  A. w  e.  x  ( y d z )  <_  (
 ( w d y ) +e ( w d z ) ) ) } )
 
Definitiondf-met 14225* Define the (proper) class of all metrics. (A metric space is the metric's base set paired with the metric. However, we will often also call the metric itself a "metric space".) Equivalent to Definition 14-1.1 of [Gleason] p. 223. (Contributed by NM, 25-Aug-2006.)
 |- 
 Met  =  ( x  e.  _V  |->  { d  e.  ( RR  ^m  ( x  X.  x ) )  | 
 A. y  e.  x  A. z  e.  x  ( ( ( y d z )  =  0  <-> 
 y  =  z ) 
 /\  A. w  e.  x  ( y d z )  <_  ( ( w d y )  +  ( w d z ) ) ) } )
 
Definitiondf-bl 14226* Define the metric space ball function. (Contributed by NM, 30-Aug-2006.) (Revised by Thierry Arnoux, 11-Feb-2018.)
 |- 
 ball  =  ( d  e.  _V  |->  ( x  e. 
 dom  dom  d ,  z  e.  RR*  |->  { y  e.  dom  dom  d  |  ( x d y )  < 
 z } ) )
 
Definitiondf-mopn 14227 Define a function whose value is the family of open sets of a metric space. (Contributed by NM, 1-Sep-2006.)
 |-  MetOpen  =  ( d  e. 
 U. ran  *Met  |->  ( topGen `  ran  ( ball `  d ) ) )
 
Definitiondf-fbas 14228* Define the class of all filter bases. Note that a filter base on one set is also a filter base for any superset, so there is not a unique base set that can be recovered. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 11-Jul-2015.)
 |- 
 fBas  =  ( w  e.  _V  |->  { x  e.  ~P ~P w  |  ( x  =/=  (/)  /\  (/)  e/  x  /\  A. y  e.  x  A. z  e.  x  ( x  i^i  ~P (
 y  i^i  z )
 )  =/=  (/) ) }
 )
 
Definitiondf-fg 14229* Define the filter generating function. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 11-Jul-2015.)
 |-  filGen  =  ( w  e. 
 _V ,  x  e.  ( fBas `  w )  |->  { y  e.  ~P w  |  ( x  i^i  ~P y )  =/=  (/) } )
 
Definitiondf-metu 14230* Define the function mapping metrics to the uniform structure generated by that metric. (Contributed by Thierry Arnoux, 1-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
 |- metUnif  =  ( d  e.  U. ran PsMet 
 |->  ( ( dom  dom  d  X.  dom  dom  d )
 filGen ran  ( a  e.  RR+  |->  ( `' d " ( 0 [,) a
 ) ) ) ) )
 
Theoremblfn 14231 The ball function has universal domain. (Contributed by Jim Kingdon, 24-Sep-2025.)
 |- 
 ball  Fn  _V
 
Theoremmopnset 14232 Getting a set by applying 
MetOpen. (Contributed by Jim Kingdon, 24-Sep-2025.)
 |-  ( D  e.  V  ->  ( MetOpen `  D )  e.  _V )
 
Theoremcndsex 14233 The standard distance function on the complex numbers is a set. (Contributed by Jim Kingdon, 28-Sep-2025.)
 |-  ( abs  o.  -  )  e.  _V
 
Theoremcntopex 14234 The standard topology on the complex numbers is a set. (Contributed by Jim Kingdon, 25-Sep-2025.)
 |-  ( MetOpen `  ( abs  o. 
 -  ) )  e. 
 _V
 
Theoremmetuex 14235 Applying metUnif yields a set. (Contributed by Jim Kingdon, 28-Sep-2025.)
 |-  ( A  e.  V  ->  (metUnif `  A )  e.  _V )
 
Syntaxccnfld 14236 Extend class notation with the field of complex numbers.
 classfld
 
Definitiondf-cnfld 14237* The field of complex numbers. Other number fields and rings can be constructed by applying the ↾s restriction operator.

The contract of this set is defined entirely by cnfldex 14239, cnfldadd 14242, cnfldmul 14244, cnfldcj 14245, cnfldtset 14246, cnfldle 14247, cnfldds 14248, and cnfldbas 14240. We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) Use maps-to notation for addition and multiplication. (Revised by GG, 31-Mar-2025.) (New usage is discouraged.)

 |-fld  =  ( ( { <. (
 Base `  ndx ) ,  CC >. ,  <. ( +g  ` 
 ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) >. , 
 <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e. 
 CC  |->  ( x  x.  y ) ) >. }  u.  { <. ( *r `  ndx ) ,  * >. } )  u.  ( { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
 ) >. ,  <. ( le ` 
 ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o. 
 -  ) >. }  u.  {
 <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
 -  ) ) >. } ) )
 
Theoremcnfldstr 14238 The field of complex numbers is a structure. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
 |-fld Struct  <. 1 , ; 1 3 >.
 
Theoremcnfldex 14239 The field of complex numbers is a set. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
 |-fld  e.  _V
 
Theoremcnfldbas 14240 The base set of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
 |- 
 CC  =  ( Base ` fld )
 
Theoremmpocnfldadd 14241* The addition operation of the field of complex numbers. Version of cnfldadd 14242 using maps-to notation, which does not require ax-addf 8029. (Contributed by GG, 31-Mar-2025.)
 |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y
 ) )  =  (
 +g  ` fld )
 
Theoremcnfldadd 14242 The addition operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by GG, 27-Apr-2025.)
 |- 
 +  =  ( +g  ` fld )
 
Theoremmpocnfldmul 14243* The multiplication operation of the field of complex numbers. Version of cnfldmul 14244 using maps-to notation, which does not require ax-mulf 8030. (Contributed by GG, 31-Mar-2025.)
 |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
 ) )  =  ( .r ` fld )
 
Theoremcnfldmul 14244 The multiplication operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by GG, 27-Apr-2025.)
 |- 
 x.  =  ( .r
 ` fld
 )
 
Theoremcnfldcj 14245 The conjugation operation of the field of complex numbers. (Contributed by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by Thierry Arnoux, 17-Dec-2017.)
 |-  *  =  ( *r ` fld )
 
Theoremcnfldtset 14246 The topology component of the field of complex numbers. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by GG, 31-Mar-2025.)
 |-  ( MetOpen `  ( abs  o. 
 -  ) )  =  (TopSet ` fld )
 
Theoremcnfldle 14247 The ordering of the field of complex numbers. Note that this is not actually an ordering on  CC, but we put it in the structure anyway because restricting to  RR does not affect this component, so that  (flds  RR ) is an ordered field even though ℂfld itself is not. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 14237. (Revised by GG, 31-Mar-2025.)
 |- 
 <_  =  ( le ` fld )
 
Theoremcnfldds 14248 The metric of the field of complex numbers. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 14237. (Revised by GG, 31-Mar-2025.)
 |-  ( abs  o.  -  )  =  ( dist ` fld )
 
Theoremcncrng 14249 The complex numbers form a commutative ring. (Contributed by Mario Carneiro, 8-Jan-2015.)
 |-fld  e.  CRing
 
Theoremcnring 14250 The complex numbers form a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-fld  e.  Ring
 
Theoremcnfld0 14251 Zero is the zero element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-  0  =  ( 0g
 ` fld
 )
 
Theoremcnfld1 14252 One is the unity element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-  1  =  ( 1r
 ` fld
 )
 
Theoremcnfldneg 14253 The additive inverse in the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-  ( X  e.  CC  ->  ( ( invg ` fld ) `  X )  =  -u X )
 
Theoremcnfldplusf 14254 The functionalized addition operation of the field of complex numbers. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |- 
 +  =  ( +f ` fld )
 
Theoremcnfldsub 14255 The subtraction operator in the field of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |- 
 -  =  ( -g ` fld )
 
Theoremcnfldmulg 14256 The group multiple function in the field of complex numbers. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  ( ( A  e.  ZZ  /\  B  e.  CC )  ->  ( A (.g ` fld ) B )  =  ( A  x.  B ) )
 
Theoremcnfldexp 14257 The exponentiation operator in the field of complex numbers (for nonnegative exponents). (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  ( ( A  e.  CC  /\  B  e.  NN0 )  ->  ( B (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ B ) )
 
Theoremcnsubmlem 14258* Lemma for nn0subm 14263 and friends. (Contributed by Mario Carneiro, 18-Jun-2015.)
 |-  ( x  e.  A  ->  x  e.  CC )   &    |-  (
 ( x  e.  A  /\  y  e.  A )  ->  ( x  +  y )  e.  A )   &    |-  0  e.  A   =>    |-  A  e.  (SubMnd ` fld )
 
Theoremcnsubglem 14259* Lemma for cnsubrglem 14260 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |-  ( x  e.  A  ->  x  e.  CC )   &    |-  (
 ( x  e.  A  /\  y  e.  A )  ->  ( x  +  y )  e.  A )   &    |-  ( x  e.  A  -> 
 -u x  e.  A )   &    |-  B  e.  A   =>    |-  A  e.  (SubGrp ` fld )
 
Theoremcnsubrglem 14260* Lemma for zsubrg 14261 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |-  ( x  e.  A  ->  x  e.  CC )   &    |-  (
 ( x  e.  A  /\  y  e.  A )  ->  ( x  +  y )  e.  A )   &    |-  ( x  e.  A  -> 
 -u x  e.  A )   &    |-  1  e.  A   &    |-  (
 ( x  e.  A  /\  y  e.  A )  ->  ( x  x.  y )  e.  A )   =>    |-  A  e.  (SubRing ` fld )
 
Theoremzsubrg 14261 The integers form a subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |- 
 ZZ  e.  (SubRing ` fld )
 
Theoremgzsubrg 14262 The gaussian integers form a subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |- 
 ZZ[_i]  e.  (SubRing ` fld )
 
Theoremnn0subm 14263 The nonnegative integers form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 18-Jun-2015.)
 |- 
 NN0  e.  (SubMnd ` fld )
 
Theoremrege0subm 14264 The nonnegative reals form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 20-Jun-2015.)
 |-  ( 0 [,) +oo )  e.  (SubMnd ` fld )
 
Theoremzsssubrg 14265 The integers are a subset of any subring of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.)
 |-  ( R  e.  (SubRing ` fld ) 
 ->  ZZ  C_  R )
 
Theoremgsumfzfsumlem0 14266* Lemma for gsumfzfsum 14268. The case where the sum is empty. (Contributed by Jim Kingdon, 9-Sep-2025.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  N  <  M )   =>    |-  ( ph  ->  (fld  gsumg  ( k  e.  ( M ... N )  |->  B ) )  =  sum_ k  e.  ( M ... N ) B )
 
Theoremgsumfzfsumlemm 14267* Lemma for gsumfzfsum 14268. The case where the sum is inhabited. (Contributed by Jim Kingdon, 9-Sep-2025.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  B  e.  CC )   =>    |-  ( ph  ->  (fld  gsumg  ( k  e.  ( M ... N )  |->  B ) )  =  sum_ k  e.  ( M ... N ) B )
 
Theoremgsumfzfsum 14268* Relate a group sum on ℂfld to a finite sum on the complex numbers. (Contributed by Mario Carneiro, 28-Dec-2014.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  ( M ... N ) )  ->  B  e.  CC )   =>    |-  ( ph  ->  (fld  gsumg  ( k  e.  ( M ... N )  |->  B ) )  =  sum_ k  e.  ( M ... N ) B )
 
Theoremcnfldui 14269 The invertible complex numbers are exactly those apart from zero. This is recapb 8726 but expressed in terms of ℂfld. (Contributed by Jim Kingdon, 11-Sep-2025.)
 |- 
 { z  e.  CC  |  z #  0 }  =  (Unit ` fld )
 
7.7.2  Ring of integers

According to Wikipedia ("Integer", 25-May-2019, https://en.wikipedia.org/wiki/Integer) "The integers form a unital ring which is the most basic one, in the following sense: for any unital ring, there is a unique ring homomorphism from the integers into this ring. This universal property, namely to be an initial object in the category of [unital] rings, characterizes the ring  Z." In set.mm, there was no explicit definition for the ring of integers until June 2019, but it was denoted by  (flds  ZZ ), the field of complex numbers restricted to the integers. In zringring 14273 it is shown that this restriction is a ring, and zringbas 14276 shows that its base set is the integers. As of June 2019, there is an abbreviation of this expression as Definition df-zring 14271 of the ring of integers.

Remark: Instead of using the symbol "ZZrng" analogous to ℂfld used for the field of complex numbers, we have chosen the version with an "i" to indicate that the ring of integers is a unital ring, see also Wikipedia ("Rng (algebra)", 9-Jun-2019, https://en.wikipedia.org/wiki/Rng_(algebra) 14271).

 
Syntaxczring 14270 Extend class notation with the (unital) ring of integers.
 classring
 
Definitiondf-zring 14271 The (unital) ring of integers. (Contributed by Alexander van der Vekens, 9-Jun-2019.)
 |-ring  =  (flds  ZZ )
 
Theoremzringcrng 14272 The ring of integers is a commutative ring. (Contributed by AV, 13-Jun-2019.)
 |-ring  e.  CRing
 
Theoremzringring 14273 The ring of integers is a ring. (Contributed by AV, 20-May-2019.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 13-Jun-2019.)
 |-ring  e.  Ring
 
Theoremzringabl 14274 The ring of integers is an (additive) abelian group. (Contributed by AV, 13-Jun-2019.)
 |-ring  e.  Abel
 
Theoremzringgrp 14275 The ring of integers is an (additive) group. (Contributed by AV, 10-Jun-2019.)
 |-ring  e.  Grp
 
Theoremzringbas 14276 The integers are the base of the ring of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.)
 |- 
 ZZ  =  ( Base ` ring )
 
Theoremzringplusg 14277 The addition operation of the ring of integers. (Contributed by Thierry Arnoux, 8-Nov-2017.) (Revised by AV, 9-Jun-2019.)
 |- 
 +  =  ( +g  ` ring )
 
Theoremzringmulg 14278 The multiplication (group power) operation of the group of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A (.g ` ring ) B )  =  ( A  x.  B ) )
 
Theoremzringmulr 14279 The multiplication operation of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.)
 |- 
 x.  =  ( .r
 ` ring
 )
 
Theoremzring0 14280 The zero element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.)
 |-  0  =  ( 0g
 ` ring
 )
 
Theoremzring1 14281 The unity element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.)
 |-  1  =  ( 1r
 ` ring
 )
 
Theoremzringnzr 14282 The ring of integers is a nonzero ring. (Contributed by AV, 18-Apr-2020.)
 |-ring  e. NzRing
 
Theoremdvdsrzring 14283 Ring divisibility in the ring of integers corresponds to ordinary divisibility in  ZZ. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.)
 |-  ||  =  ( ||r ` ring )
 
Theoremzringinvg 14284 The additive inverse of an element of the ring of integers. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
 |-  ( A  e.  ZZ  -> 
 -u A  =  ( ( invg ` ring ) `  A ) )
 
Theoremzringsubgval 14285 Subtraction in the ring of integers. (Contributed by AV, 3-Aug-2019.)
 |-  .-  =  ( -g ` ring )   =>    |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( X  -  Y )  =  ( X  .-  Y ) )
 
Theoremzringmpg 14286 The multiplicative group of the ring of integers is the restriction of the multiplicative group of the complex numbers to the integers. (Contributed by AV, 15-Jun-2019.)
 |-  ( (mulGrp ` fld )s  ZZ )  =  (mulGrp ` ring )
 
Theoremexpghmap 14287* Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.) (Revised by Jim Kingdon, 11-Sep-2025.)
 |-  M  =  (mulGrp ` fld )   &    |-  U  =  ( Ms 
 { z  e.  CC  |  z #  0 }
 )   =>    |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  ( x  e.  ZZ  |->  ( A ^ x ) )  e.  (ring  GrpHom  U ) )
 
Theoremmulgghm2 14288* The powers of a group element give a homomorphism from  ZZ to a group. The name  .1. should not be taken as a constraint as it may be any group element. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |- 
 .x.  =  (.g `  R )   &    |-  F  =  ( n  e.  ZZ  |->  ( n 
 .x.  .1.  ) )   &    |-  B  =  ( Base `  R )   =>    |-  (
 ( R  e.  Grp  /\ 
 .1.  e.  B )  ->  F  e.  (ring  GrpHom  R ) )
 
Theoremmulgrhm 14289* The powers of the element  1 give a ring homomorphism from  ZZ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |- 
 .x.  =  (.g `  R )   &    |-  F  =  ( n  e.  ZZ  |->  ( n 
 .x.  .1.  ) )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( R  e.  Ring  ->  F  e.  (ring RingHom  R ) )
 
Theoremmulgrhm2 14290* The powers of the element  1 give the unique ring homomorphism from  ZZ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |- 
 .x.  =  (.g `  R )   &    |-  F  =  ( n  e.  ZZ  |->  ( n 
 .x.  .1.  ) )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( R  e.  Ring  ->  (ring RingHom  R )  =  { F } )
 
7.7.3  Algebraic constructions based on the complex numbers
 
Syntaxczrh 14291 Map the rationals into a field, or the integers into a ring.
 class  ZRHom
 
Syntaxczlm 14292 Augment an abelian group with vector space operations to turn it into a  ZZ-module.
 class  ZMod
 
Syntaxczn 14293 The ring of integers modulo  n.
 class ℤ/n
 
Definitiondf-zrh 14294 Define the unique homomorphism from the integers into a ring. This encodes the usual notation of 
n  =  1r  +  1r  +  ...  +  1r for integers (see also df-mulg 13374). (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |-  ZRHom  =  ( r  e.  _V  |->  U. (ring RingHom  r ) )
 
Definitiondf-zlm 14295 Augment an abelian group with vector space operations to turn it into a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.)
 |-  ZMod  =  ( g  e.  _V  |->  ( ( g sSet  <. (Scalar `  ndx ) ,ring >. ) sSet  <. ( .s `  ndx ) ,  (.g `  g
 ) >. ) )
 
Definitiondf-zn 14296* Define the ring of integers  mod  n. This is literally the quotient ring of  ZZ by the ideal  n ZZ, but we augment it with a total order. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |- ℤ/n =  ( n  e.  NN0  |->  [_ring  /  z ]_ [_ (
 z  /.s  ( z ~QG  ( (RSpan `  z
 ) `  { n } ) ) ) 
 /  s ]_ (
 s sSet  <. ( le `  ndx ) ,  [_ ( ( ZRHom `  s )  |` 
 if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  /  f ]_ ( ( f  o. 
 <_  )  o.  `' f
 ) >. ) )
 
Theoremzrhval 14297 Define the unique homomorphism from the integers to a ring or field. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |-  L  =  ( ZRHom `  R )   =>    |-  L  =  U. (ring RingHom  R )
 
Theoremzrhvalg 14298 Define the unique homomorphism from the integers to a ring or field. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |-  L  =  ( ZRHom `  R )   =>    |-  ( R  e.  V  ->  L  =  U. (ring RingHom  R ) )
 
Theoremzrhval2 14299* Alternate value of the  ZRHom homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
 |-  L  =  ( ZRHom `  R )   &    |-  .x.  =  (.g `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( R  e.  Ring  ->  L  =  ( n  e. 
 ZZ  |->  ( n  .x.  .1.  ) ) )
 
Theoremzrhmulg 14300 Value of the  ZRHom homomorphism. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  L  =  ( ZRHom `  R )   &    |-  .x.  =  (.g `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( ( R  e.  Ring  /\  N  e.  ZZ )  ->  ( L `  N )  =  ( N  .x.  .1.  ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15887
  Copyright terms: Public domain < Previous  Next >