HomeHome Intuitionistic Logic Explorer
Theorem List (p. 143 of 159)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 14201-14300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcnfldle 14201 The ordering of the field of complex numbers. Note that this is not actually an ordering on  CC, but we put it in the structure anyway because restricting to  RR does not affect this component, so that  (flds  RR ) is an ordered field even though ℂfld itself is not. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 14191. (Revised by GG, 31-Mar-2025.)
 |- 
 <_  =  ( le ` fld )
 
Theoremcnfldds 14202 The metric of the field of complex numbers. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 14191. (Revised by GG, 31-Mar-2025.)
 |-  ( abs  o.  -  )  =  ( dist ` fld )
 
Theoremcncrng 14203 The complex numbers form a commutative ring. (Contributed by Mario Carneiro, 8-Jan-2015.)
 |-fld  e.  CRing
 
Theoremcnring 14204 The complex numbers form a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-fld  e.  Ring
 
Theoremcnfld0 14205 Zero is the zero element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-  0  =  ( 0g
 ` fld
 )
 
Theoremcnfld1 14206 One is the unity element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-  1  =  ( 1r
 ` fld
 )
 
Theoremcnfldneg 14207 The additive inverse in the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-  ( X  e.  CC  ->  ( ( invg ` fld ) `  X )  =  -u X )
 
Theoremcnfldplusf 14208 The functionalized addition operation of the field of complex numbers. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |- 
 +  =  ( +f ` fld )
 
Theoremcnfldsub 14209 The subtraction operator in the field of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |- 
 -  =  ( -g ` fld )
 
Theoremcnfldmulg 14210 The group multiple function in the field of complex numbers. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  ( ( A  e.  ZZ  /\  B  e.  CC )  ->  ( A (.g ` fld ) B )  =  ( A  x.  B ) )
 
Theoremcnfldexp 14211 The exponentiation operator in the field of complex numbers (for nonnegative exponents). (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  ( ( A  e.  CC  /\  B  e.  NN0 )  ->  ( B (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ B ) )
 
Theoremcnsubmlem 14212* Lemma for nn0subm 14217 and friends. (Contributed by Mario Carneiro, 18-Jun-2015.)
 |-  ( x  e.  A  ->  x  e.  CC )   &    |-  (
 ( x  e.  A  /\  y  e.  A )  ->  ( x  +  y )  e.  A )   &    |-  0  e.  A   =>    |-  A  e.  (SubMnd ` fld )
 
Theoremcnsubglem 14213* Lemma for cnsubrglem 14214 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |-  ( x  e.  A  ->  x  e.  CC )   &    |-  (
 ( x  e.  A  /\  y  e.  A )  ->  ( x  +  y )  e.  A )   &    |-  ( x  e.  A  -> 
 -u x  e.  A )   &    |-  B  e.  A   =>    |-  A  e.  (SubGrp ` fld )
 
Theoremcnsubrglem 14214* Lemma for zsubrg 14215 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |-  ( x  e.  A  ->  x  e.  CC )   &    |-  (
 ( x  e.  A  /\  y  e.  A )  ->  ( x  +  y )  e.  A )   &    |-  ( x  e.  A  -> 
 -u x  e.  A )   &    |-  1  e.  A   &    |-  (
 ( x  e.  A  /\  y  e.  A )  ->  ( x  x.  y )  e.  A )   =>    |-  A  e.  (SubRing ` fld )
 
Theoremzsubrg 14215 The integers form a subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |- 
 ZZ  e.  (SubRing ` fld )
 
Theoremgzsubrg 14216 The gaussian integers form a subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |- 
 ZZ[_i]  e.  (SubRing ` fld )
 
Theoremnn0subm 14217 The nonnegative integers form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 18-Jun-2015.)
 |- 
 NN0  e.  (SubMnd ` fld )
 
Theoremrege0subm 14218 The nonnegative reals form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 20-Jun-2015.)
 |-  ( 0 [,) +oo )  e.  (SubMnd ` fld )
 
Theoremzsssubrg 14219 The integers are a subset of any subring of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.)
 |-  ( R  e.  (SubRing ` fld ) 
 ->  ZZ  C_  R )
 
Theoremgsumfzfsumlem0 14220* Lemma for gsumfzfsum 14222. The case where the sum is empty. (Contributed by Jim Kingdon, 9-Sep-2025.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  N  <  M )   =>    |-  ( ph  ->  (fld  gsumg  ( k  e.  ( M ... N )  |->  B ) )  =  sum_ k  e.  ( M ... N ) B )
 
Theoremgsumfzfsumlemm 14221* Lemma for gsumfzfsum 14222. The case where the sum is inhabited. (Contributed by Jim Kingdon, 9-Sep-2025.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  B  e.  CC )   =>    |-  ( ph  ->  (fld  gsumg  ( k  e.  ( M ... N )  |->  B ) )  =  sum_ k  e.  ( M ... N ) B )
 
Theoremgsumfzfsum 14222* Relate a group sum on ℂfld to a finite sum on the complex numbers. (Contributed by Mario Carneiro, 28-Dec-2014.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  ( M ... N ) )  ->  B  e.  CC )   =>    |-  ( ph  ->  (fld  gsumg  ( k  e.  ( M ... N )  |->  B ) )  =  sum_ k  e.  ( M ... N ) B )
 
Theoremcnfldui 14223 The invertible complex numbers are exactly those apart from zero. This is recapb 8717 but expressed in terms of ℂfld. (Contributed by Jim Kingdon, 11-Sep-2025.)
 |- 
 { z  e.  CC  |  z #  0 }  =  (Unit ` fld )
 
7.7.2  Ring of integers

According to Wikipedia ("Integer", 25-May-2019, https://en.wikipedia.org/wiki/Integer) "The integers form a unital ring which is the most basic one, in the following sense: for any unital ring, there is a unique ring homomorphism from the integers into this ring. This universal property, namely to be an initial object in the category of [unital] rings, characterizes the ring  Z." In set.mm, there was no explicit definition for the ring of integers until June 2019, but it was denoted by  (flds  ZZ ), the field of complex numbers restricted to the integers. In zringring 14227 it is shown that this restriction is a ring, and zringbas 14230 shows that its base set is the integers. As of June 2019, there is an abbreviation of this expression as Definition df-zring 14225 of the ring of integers.

Remark: Instead of using the symbol "ZZrng" analogous to ℂfld used for the field of complex numbers, we have chosen the version with an "i" to indicate that the ring of integers is a unital ring, see also Wikipedia ("Rng (algebra)", 9-Jun-2019, https://en.wikipedia.org/wiki/Rng_(algebra) 14225).

 
Syntaxczring 14224 Extend class notation with the (unital) ring of integers.
 classring
 
Definitiondf-zring 14225 The (unital) ring of integers. (Contributed by Alexander van der Vekens, 9-Jun-2019.)
 |-ring  =  (flds  ZZ )
 
Theoremzringcrng 14226 The ring of integers is a commutative ring. (Contributed by AV, 13-Jun-2019.)
 |-ring  e.  CRing
 
Theoremzringring 14227 The ring of integers is a ring. (Contributed by AV, 20-May-2019.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 13-Jun-2019.)
 |-ring  e.  Ring
 
Theoremzringabl 14228 The ring of integers is an (additive) abelian group. (Contributed by AV, 13-Jun-2019.)
 |-ring  e.  Abel
 
Theoremzringgrp 14229 The ring of integers is an (additive) group. (Contributed by AV, 10-Jun-2019.)
 |-ring  e.  Grp
 
Theoremzringbas 14230 The integers are the base of the ring of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.)
 |- 
 ZZ  =  ( Base ` ring )
 
Theoremzringplusg 14231 The addition operation of the ring of integers. (Contributed by Thierry Arnoux, 8-Nov-2017.) (Revised by AV, 9-Jun-2019.)
 |- 
 +  =  ( +g  ` ring )
 
Theoremzringmulg 14232 The multiplication (group power) operation of the group of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A (.g ` ring ) B )  =  ( A  x.  B ) )
 
Theoremzringmulr 14233 The multiplication operation of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.)
 |- 
 x.  =  ( .r
 ` ring
 )
 
Theoremzring0 14234 The zero element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.)
 |-  0  =  ( 0g
 ` ring
 )
 
Theoremzring1 14235 The unity element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.)
 |-  1  =  ( 1r
 ` ring
 )
 
Theoremzringnzr 14236 The ring of integers is a nonzero ring. (Contributed by AV, 18-Apr-2020.)
 |-ring  e. NzRing
 
Theoremdvdsrzring 14237 Ring divisibility in the ring of integers corresponds to ordinary divisibility in  ZZ. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.)
 |-  ||  =  ( ||r ` ring )
 
Theoremzringinvg 14238 The additive inverse of an element of the ring of integers. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
 |-  ( A  e.  ZZ  -> 
 -u A  =  ( ( invg ` ring ) `  A ) )
 
Theoremzringsubgval 14239 Subtraction in the ring of integers. (Contributed by AV, 3-Aug-2019.)
 |-  .-  =  ( -g ` ring )   =>    |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( X  -  Y )  =  ( X  .-  Y ) )
 
Theoremzringmpg 14240 The multiplicative group of the ring of integers is the restriction of the multiplicative group of the complex numbers to the integers. (Contributed by AV, 15-Jun-2019.)
 |-  ( (mulGrp ` fld )s  ZZ )  =  (mulGrp ` ring )
 
Theoremexpghmap 14241* Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.) (Revised by Jim Kingdon, 11-Sep-2025.)
 |-  M  =  (mulGrp ` fld )   &    |-  U  =  ( Ms 
 { z  e.  CC  |  z #  0 }
 )   =>    |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  ( x  e.  ZZ  |->  ( A ^ x ) )  e.  (ring  GrpHom  U ) )
 
Theoremmulgghm2 14242* The powers of a group element give a homomorphism from  ZZ to a group. The name  .1. should not be taken as a constraint as it may be any group element. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |- 
 .x.  =  (.g `  R )   &    |-  F  =  ( n  e.  ZZ  |->  ( n 
 .x.  .1.  ) )   &    |-  B  =  ( Base `  R )   =>    |-  (
 ( R  e.  Grp  /\ 
 .1.  e.  B )  ->  F  e.  (ring  GrpHom  R ) )
 
Theoremmulgrhm 14243* The powers of the element  1 give a ring homomorphism from  ZZ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |- 
 .x.  =  (.g `  R )   &    |-  F  =  ( n  e.  ZZ  |->  ( n 
 .x.  .1.  ) )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( R  e.  Ring  ->  F  e.  (ring RingHom  R ) )
 
Theoremmulgrhm2 14244* The powers of the element  1 give the unique ring homomorphism from  ZZ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |- 
 .x.  =  (.g `  R )   &    |-  F  =  ( n  e.  ZZ  |->  ( n 
 .x.  .1.  ) )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( R  e.  Ring  ->  (ring RingHom  R )  =  { F } )
 
7.7.3  Algebraic constructions based on the complex numbers
 
Syntaxczrh 14245 Map the rationals into a field, or the integers into a ring.
 class  ZRHom
 
Syntaxczlm 14246 Augment an abelian group with vector space operations to turn it into a  ZZ-module.
 class  ZMod
 
Syntaxczn 14247 The ring of integers modulo  n.
 class ℤ/n
 
Definitiondf-zrh 14248 Define the unique homomorphism from the integers into a ring. This encodes the usual notation of 
n  =  1r  +  1r  +  ...  +  1r for integers (see also df-mulg 13328). (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |-  ZRHom  =  ( r  e.  _V  |->  U. (ring RingHom  r ) )
 
Definitiondf-zlm 14249 Augment an abelian group with vector space operations to turn it into a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.)
 |-  ZMod  =  ( g  e.  _V  |->  ( ( g sSet  <. (Scalar `  ndx ) ,ring >. ) sSet  <. ( .s `  ndx ) ,  (.g `  g
 ) >. ) )
 
Definitiondf-zn 14250* Define the ring of integers  mod  n. This is literally the quotient ring of  ZZ by the ideal  n ZZ, but we augment it with a total order. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |- ℤ/n =  ( n  e.  NN0  |->  [_ring  /  z ]_ [_ (
 z  /.s  ( z ~QG  ( (RSpan `  z
 ) `  { n } ) ) ) 
 /  s ]_ (
 s sSet  <. ( le `  ndx ) ,  [_ ( ( ZRHom `  s )  |` 
 if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  /  f ]_ ( ( f  o. 
 <_  )  o.  `' f
 ) >. ) )
 
Theoremzrhval 14251 Define the unique homomorphism from the integers to a ring or field. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |-  L  =  ( ZRHom `  R )   =>    |-  L  =  U. (ring RingHom  R )
 
Theoremzrhvalg 14252 Define the unique homomorphism from the integers to a ring or field. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |-  L  =  ( ZRHom `  R )   =>    |-  ( R  e.  V  ->  L  =  U. (ring RingHom  R ) )
 
Theoremzrhval2 14253* Alternate value of the  ZRHom homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
 |-  L  =  ( ZRHom `  R )   &    |-  .x.  =  (.g `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( R  e.  Ring  ->  L  =  ( n  e. 
 ZZ  |->  ( n  .x.  .1.  ) ) )
 
Theoremzrhmulg 14254 Value of the  ZRHom homomorphism. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  L  =  ( ZRHom `  R )   &    |-  .x.  =  (.g `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( ( R  e.  Ring  /\  N  e.  ZZ )  ->  ( L `  N )  =  ( N  .x.  .1.  ) )
 
Theoremzrhex 14255 Set existence for  ZRHom. (Contributed by Jim Kingdon, 19-May-2025.)
 |-  L  =  ( ZRHom `  R )   =>    |-  ( R  e.  V  ->  L  e.  _V )
 
Theoremzrhrhmb 14256 The  ZRHom homomorphism is the unique ring homomorphism from  ZZ. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |-  L  =  ( ZRHom `  R )   =>    |-  ( R  e.  Ring  ->  ( F  e.  (ring RingHom  R )  <->  F  =  L )
 )
 
Theoremzrhrhm 14257 The  ZRHom homomorphism is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |-  L  =  ( ZRHom `  R )   =>    |-  ( R  e.  Ring  ->  L  e.  (ring RingHom  R ) )
 
Theoremzrh1 14258 Interpretation of 1 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015.)
 |-  L  =  ( ZRHom `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( R  e.  Ring  ->  ( L `  1 )  =  .1.  )
 
Theoremzrh0 14259 Interpretation of 0 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015.)
 |-  L  =  ( ZRHom `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( R  e.  Ring  ->  ( L `  0 )  =  .0.  )
 
Theoremzrhpropd 14260* The  ZZ ring homomorphism depends only on the ring attributes of a structure. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( .r `  K ) y )  =  ( x ( .r `  L ) y ) )   =>    |-  ( ph  ->  ( ZRHom `  K )  =  ( ZRHom `  L ) )
 
Theoremzlmval 14261 Augment an abelian group with vector space operations to turn it into a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.)
 |-  W  =  ( ZMod `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( G  e.  V  ->  W  =  ( ( G sSet  <. (Scalar `  ndx ) ,ring >. ) sSet  <. ( .s `  ndx ) ,  .x.  >. ) )
 
Theoremzlmlemg 14262 Lemma for zlmbasg 14263 and zlmplusgg 14264. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
 |-  W  =  ( ZMod `  G )   &    |-  E  = Slot  ( E `  ndx )   &    |-  ( E `  ndx )  e. 
 NN   &    |-  ( E `  ndx )  =/=  (Scalar `  ndx )   &    |-  ( E `  ndx )  =/=  ( .s `  ndx )   =>    |-  ( G  e.  V  ->  ( E `  G )  =  ( E `  W ) )
 
Theoremzlmbasg 14263 Base set of a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
 |-  W  =  ( ZMod `  G )   &    |-  B  =  (
 Base `  G )   =>    |-  ( G  e.  V  ->  B  =  (
 Base `  W ) )
 
Theoremzlmplusgg 14264 Group operation of a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
 |-  W  =  ( ZMod `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  V  ->  .+  =  ( +g  `  W ) )
 
Theoremzlmmulrg 14265 Ring operation of a  ZZ-module (if present). (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
 |-  W  =  ( ZMod `  G )   &    |-  .x.  =  ( .r `  G )   =>    |-  ( G  e.  V  ->  .x.  =  ( .r `  W ) )
 
Theoremzlmsca 14266 Scalar ring of a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.) (Proof shortened by AV, 2-Nov-2024.)
 |-  W  =  ( ZMod `  G )   =>    |-  ( G  e.  V  ->ring  =  (Scalar `  W )
 )
 
Theoremzlmvscag 14267 Scalar multiplication operation of a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  W  =  ( ZMod `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( G  e.  V  ->  .x.  =  ( .s
 `  W ) )
 
Theoremznlidl 14268 The set  n ZZ is an ideal in  ZZ. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   =>    |-  ( N  e.  ZZ  ->  ( S `  { N } )  e.  (LIdeal ` ring ) )
 
Theoremzncrng2 14269 Making a commutative ring as a quotient of  ZZ and 
n ZZ. (Contributed by Mario Carneiro, 12-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   =>    |-  ( N  e.  ZZ  ->  U  e.  CRing )
 
Theoremznval 14270 The value of the ℤ/nℤ structure. It is defined as the quotient ring  ZZ  /  n ZZ, with an "artificial" ordering added. (In other words, ℤ/nℤ is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   &    |-  F  =  ( ( ZRHom `  U )  |`  W )   &    |-  W  =  if ( N  =  0 ,  ZZ ,  (
 0..^ N ) )   &    |-  .<_  =  ( ( F  o.  <_  )  o.  `' F )   =>    |-  ( N  e.  NN0  ->  Y  =  ( U sSet  <.
 ( le `  ndx ) ,  .<_  >. ) )
 
Theoremznle 14271 The value of the ℤ/nℤ structure. It is defined as the quotient ring  ZZ  /  n ZZ, with an "artificial" ordering added. (In other words, ℤ/nℤ is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   &    |-  F  =  ( ( ZRHom `  U )  |`  W )   &    |-  W  =  if ( N  =  0 ,  ZZ ,  (
 0..^ N ) )   &    |-  .<_  =  ( le `  Y )   =>    |-  ( N  e.  NN0  ->  .<_  =  ( ( F  o.  <_  )  o.  `' F ) )
 
Theoremznval2 14272 Self-referential expression for the ℤ/nℤ structure. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   &    |-  .<_  =  ( le `  Y )   =>    |-  ( N  e.  NN0  ->  Y  =  ( U sSet  <.
 ( le `  ndx ) ,  .<_  >. ) )
 
Theoremznbaslemnn 14273 Lemma for znbas 14278. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 9-Sep-2021.) (Revised by AV, 3-Nov-2024.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   &    |-  E  = Slot  ( E `  ndx )   &    |-  ( E `  ndx )  e. 
 NN   &    |-  ( E `  ndx )  =/=  ( le `  ndx )   =>    |-  ( N  e.  NN0  ->  ( E `  U )  =  ( E `  Y ) )
 
Theoremznbas2 14274 The base set of ℤ/nℤ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  NN0  ->  ( Base `  U )  =  ( Base `  Y )
 )
 
Theoremznadd 14275 The additive structure of ℤ/nℤ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  NN0  ->  ( +g  `  U )  =  ( +g  `  Y ) )
 
Theoremznmul 14276 The multiplicative structure of ℤ/nℤ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  NN0  ->  ( .r `  U )  =  ( .r `  Y ) )
 
Theoremznzrh 14277 The  ZZ ring homomorphism of ℤ/nℤ is inherited from the quotient ring it is based on. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  NN0  ->  ( ZRHom `  U )  =  ( ZRHom `  Y ) )
 
Theoremznbas 14278 The base set of ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   &    |-  Y  =  (ℤ/n `  N )   &    |-  R  =  (ring ~QG  ( S `
  { N }
 ) )   =>    |-  ( N  e.  NN0  ->  ( ZZ /. R )  =  ( Base `  Y ) )
 
Theoremzncrng 14279 ℤ/nℤ is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  NN0  ->  Y  e.  CRing )
 
Theoremznzrh2 14280* The  ZZ ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   &    |-  .~  =  (ring ~QG  ( S `  { N }
 ) )   &    |-  Y  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Y )   =>    |-  ( N  e.  NN0  ->  L  =  ( x  e.  ZZ  |->  [ x ]  .~  )
 )
 
Theoremznzrhval 14281 The  ZZ ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   &    |-  .~  =  (ring ~QG  ( S `  { N }
 ) )   &    |-  Y  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Y )   =>    |-  (
 ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( L `  A )  =  [ A ]  .~  )
 
Theoremznzrhfo 14282 The  ZZ ring homomorphism is a surjection onto ℤ/nℤ. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  Y  =  (ℤ/n `  N )   &    |-  B  =  ( Base `  Y )   &    |-  L  =  ( ZRHom `  Y )   =>    |-  ( N  e.  NN0  ->  L : ZZ -onto-> B )
 
Theoremzndvds 14283 Express equality of equivalence classes in  ZZ 
/  n ZZ in terms of divisibility. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  Y  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Y )   =>    |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( L `  A )  =  ( L `  B )  <->  N  ||  ( A  -  B ) ) )
 
Theoremzndvds0 14284 Special case of zndvds 14283 when one argument is zero. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  Y  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Y )   &    |-  .0.  =  ( 0g `  Y )   =>    |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( L `  A )  =  .0.  <->  N  ||  A ) )
 
Theoremznf1o 14285 The function  F enumerates all equivalence classes in ℤ/nℤ for each  n. When  n  = 
0,  ZZ  /  0 ZZ  =  ZZ  /  {
0 }  ~~  ZZ so we let  W  =  ZZ; otherwise  W  =  { 0 , 
... ,  n  - 
1 } enumerates all the equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.)
 |-  Y  =  (ℤ/n `  N )   &    |-  B  =  ( Base `  Y )   &    |-  F  =  ( ( ZRHom `  Y )  |`  W )   &    |-  W  =  if ( N  =  0 ,  ZZ ,  (
 0..^ N ) )   =>    |-  ( N  e.  NN0  ->  F : W -1-1-onto-> B )
 
Theoremznle2 14286 The ordering of the ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  Y  =  (ℤ/n `  N )   &    |-  F  =  ( ( ZRHom `  Y )  |`  W )   &    |-  W  =  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )   &    |-  .<_  =  ( le `  Y )   =>    |-  ( N  e.  NN0  ->  .<_  =  ( ( F  o.  <_  )  o.  `' F ) )
 
Theoremznleval 14287 The ordering of the ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  Y  =  (ℤ/n `  N )   &    |-  F  =  ( ( ZRHom `  Y )  |`  W )   &    |-  W  =  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )   &    |-  .<_  =  ( le `  Y )   &    |-  X  =  ( Base `  Y )   =>    |-  ( N  e.  NN0  ->  ( A  .<_  B  <->  ( A  e.  X  /\  B  e.  X  /\  ( `' F `  A )  <_  ( `' F `  B ) ) ) )
 
Theoremznleval2 14288 The ordering of the ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  Y  =  (ℤ/n `  N )   &    |-  F  =  ( ( ZRHom `  Y )  |`  W )   &    |-  W  =  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )   &    |-  .<_  =  ( le `  Y )   &    |-  X  =  ( Base `  Y )   =>    |-  ( ( N  e.  NN0  /\  A  e.  X  /\  B  e.  X )  ->  ( A  .<_  B  <->  ( `' F `  A )  <_  ( `' F `  B ) ) )
 
Theoremznfi 14289 The ℤ/nℤ structure is a finite ring. (Contributed by Mario Carneiro, 2-May-2016.)
 |-  Y  =  (ℤ/n `  N )   &    |-  B  =  ( Base `  Y )   =>    |-  ( N  e.  NN  ->  B  e.  Fin )
 
Theoremznhash 14290 The ℤ/nℤ structure has  n elements. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  Y  =  (ℤ/n `  N )   &    |-  B  =  ( Base `  Y )   =>    |-  ( N  e.  NN  ->  ( `  B )  =  N )
 
Theoremznidom 14291 The ℤ/nℤ structure is an integral domain when  n is prime. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by Jim Kingdon, 13-Aug-2025.)
 |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  Prime  ->  Y  e. IDomn )
 
Theoremznidomb 14292 The ℤ/nℤ structure is a domain precisely when  n is prime. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  NN  ->  ( Y  e. IDomn  <->  N  e.  Prime ) )
 
Theoremznunit 14293 The units of ℤ/nℤ are the integers coprime to the base. (Contributed by Mario Carneiro, 18-Apr-2016.)
 |-  Y  =  (ℤ/n `  N )   &    |-  U  =  (Unit `  Y )   &    |-  L  =  ( ZRHom `  Y )   =>    |-  (
 ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( L `  A )  e.  U  <->  ( A  gcd  N )  =  1 ) )
 
Theoremznrrg 14294 The regular elements of ℤ/nℤ are exactly the units. (This theorem fails for  N  =  0, where all nonzero integers are regular, but only  pm 1 are units.) (Contributed by Mario Carneiro, 18-Apr-2016.)
 |-  Y  =  (ℤ/n `  N )   &    |-  U  =  (Unit `  Y )   &    |-  E  =  (RLReg `  Y )   =>    |-  ( N  e.  NN  ->  E  =  U )
 
PART 8  BASIC LINEAR ALGEBRA

According to Wikipedia ("Linear algebra", 03-Mar-2019, https://en.wikipedia.org/wiki/Linear_algebra) "Linear algebra is the branch of mathematics concerning linear equations [...], linear functions [...] and their representations through matrices and vector spaces." Or according to the Merriam-Webster dictionary ("linear algebra", 12-Mar-2019, https://www.merriam-webster.com/dictionary/linear%20algebra) "Definition of linear algebra: a branch of mathematics that is concerned with mathematical structures closed under the operations of addition and scalar multiplication and that includes the theory of systems of linear equations, matrices, determinants, vector spaces, and linear transformations." Dealing with modules (over rings) instead of vector spaces (over fields) allows for a more unified approach. Therefore, linear equations, matrices, determinants, are usually regarded as "over a ring" in this part.

Unless otherwise stated, the rings of scalars need not be commutative (see df-cring 13633), but the existence of a unity element is always assumed (our rings are unital, see df-ring 13632).

For readers knowing vector spaces but unfamiliar with modules: the elements of a module are still called "vectors" and they still form a group under addition, with a zero vector as neutral element, like in a vector space. Like in a vector space, vectors can be multiplied by scalars, with the usual rules, the only difference being that the scalars are only required to form a ring, and not necessarily a field or a division ring. Note that any vector space is a (special kind of) module, so any theorem proved below for modules applies to any vector space.

 
8.1  Abstract multivariate polynomials
 
8.1.1  Definition and basic properties
 
Syntaxcmps 14295 Multivariate power series.
 class mPwSer
 
Syntaxcmpl 14296 Multivariate polynomials.
 class mPoly
 
Definitiondf-psr 14297* Define the algebra of power series over the index set  i and with coefficients from the ring  r. (Contributed by Mario Carneiro, 21-Mar-2015.)
 |- mPwSer  =  ( i  e.  _V ,  r  e.  _V  |->  [_
 { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin } 
 /  d ]_ [_ (
 ( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base ` 
 ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r
 )  |`  ( b  X.  b ) ) >. , 
 <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
 `  r ) ( g `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  r >. , 
 <. ( .s `  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r ) f ) ) >. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
 ( TopOpen `  r ) } ) ) >. } ) )
 
Definitiondf-mplcoe 14298* Define the subalgebra of the power series algebra generated by the variables; this is the polynomial algebra (the set of power series with finite degree).

The index set (which has an element for each variable) is  i, the coefficients are in ring  r, and for each variable there is a "degree" such that the coefficient is zero for a term where the powers are all greater than those degrees. (Degree is in quotes because there is no guarantee that coefficients below that degree are nonzero, as we do not assume decidable equality for  r). (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 7-Oct-2025.)

 |- mPoly  =  ( i  e.  _V ,  r  e.  _V  |->  [_ ( i mPwSer  r ) 
 /  w ]_ ( ws  { f  e.  ( Base `  w )  |  E. a  e.  ( NN0  ^m  i ) A. b  e.  ( NN0  ^m  i
 ) ( A. k  e.  i  ( a `  k )  <  (
 b `  k )  ->  ( f `  b
 )  =  ( 0g
 `  r ) ) } ) )
 
Theoremreldmpsr 14299 The multivariate power series constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.)
 |- 
 Rel  dom mPwSer
 
Theorempsrval 14300* Value of the multivariate power series structure. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  S  =  ( I mPwSer  R )   &    |-  K  =  (
 Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  O  =  ( TopOpen `  R )   &    |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }   &    |-  ( ph  ->  B  =  ( K  ^m  D ) )   &    |-  .+b  =  (  oF  .+  |`  ( B  X.  B ) )   &    |-  .X. 
 =  ( f  e.  B ,  g  e.  B  |->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( ( f `  x )  .x.  ( g `
  ( k  oF  -  x ) ) ) ) ) ) )   &    |-  .xb  =  ( x  e.  K ,  f  e.  B  |->  ( ( D  X.  { x } )  oF  .x.  f ) )   &    |-  ( ph  ->  J  =  (
 Xt_ `  ( D  X.  { O } )
 ) )   &    |-  ( ph  ->  I  e.  W )   &    |-  ( ph  ->  R  e.  X )   =>    |-  ( ph  ->  S  =  ( { <. ( Base ` 
 ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s
 `  ndx ) ,  .xb  >. ,  <. (TopSet `  ndx ) ,  J >. } ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15841
  Copyright terms: Public domain < Previous  Next >