ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmonim Unicode version

Theorem exmonim 2065
Description: There is at most one of something which does not exist. Unlike exmodc 2064 there is no decidability condition. (Contributed by Jim Kingdon, 22-Sep-2018.)
Assertion
Ref Expression
exmonim  |-  ( -. 
E. x ph  ->  E* x ph )

Proof of Theorem exmonim
StepHypRef Expression
1 pm2.21 607 . 2  |-  ( -. 
E. x ph  ->  ( E. x ph  ->  E! x ph ) )
2 df-mo 2018 . 2  |-  ( E* x ph  <->  ( E. x ph  ->  E! x ph ) )
31, 2sylibr 133 1  |-  ( -. 
E. x ph  ->  E* x ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   E.wex 1480   E!weu 2014   E*wmo 2015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605
This theorem depends on definitions:  df-bi 116  df-mo 2018
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator