ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mo2r Unicode version

Theorem mo2r 2078
Description: A condition which implies "at most one". (Contributed by Jim Kingdon, 2-Jul-2018.)
Hypothesis
Ref Expression
mo2r.1  |-  F/ y
ph
Assertion
Ref Expression
mo2r  |-  ( E. y A. x (
ph  ->  x  =  y )  ->  E* x ph )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem mo2r
StepHypRef Expression
1 mo2r.1 . . . . 5  |-  F/ y
ph
21nfri 1519 . . . 4  |-  ( ph  ->  A. y ph )
32eu3h 2071 . . 3  |-  ( E! x ph  <->  ( E. x ph  /\  E. y A. x ( ph  ->  x  =  y ) ) )
43simplbi2com 1444 . 2  |-  ( E. y A. x (
ph  ->  x  =  y )  ->  ( E. x ph  ->  E! x ph ) )
5 df-mo 2030 . 2  |-  ( E* x ph  <->  ( E. x ph  ->  E! x ph ) )
64, 5sylibr 134 1  |-  ( E. y A. x (
ph  ->  x  =  y )  ->  E* x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1351   F/wnf 1460   E.wex 1492   E!weu 2026   E*wmo 2027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030
This theorem is referenced by:  mo2icl  2918  rmo2ilem  3054  dffun5r  5230  frecuzrdgtcl  10414  frecuzrdgfunlem  10421
  Copyright terms: Public domain W3C validator