ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mo2r Unicode version

Theorem mo2r 2066
Description: A condition which implies "at most one". (Contributed by Jim Kingdon, 2-Jul-2018.)
Hypothesis
Ref Expression
mo2r.1  |-  F/ y
ph
Assertion
Ref Expression
mo2r  |-  ( E. y A. x (
ph  ->  x  =  y )  ->  E* x ph )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem mo2r
StepHypRef Expression
1 mo2r.1 . . . . 5  |-  F/ y
ph
21nfri 1507 . . . 4  |-  ( ph  ->  A. y ph )
32eu3h 2059 . . 3  |-  ( E! x ph  <->  ( E. x ph  /\  E. y A. x ( ph  ->  x  =  y ) ) )
43simplbi2com 1432 . 2  |-  ( E. y A. x (
ph  ->  x  =  y )  ->  ( E. x ph  ->  E! x ph ) )
5 df-mo 2018 . 2  |-  ( E* x ph  <->  ( E. x ph  ->  E! x ph ) )
64, 5sylibr 133 1  |-  ( E. y A. x (
ph  ->  x  =  y )  ->  E* x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1341   F/wnf 1448   E.wex 1480   E!weu 2014   E*wmo 2015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018
This theorem is referenced by:  mo2icl  2905  rmo2ilem  3040  dffun5r  5200  frecuzrdgtcl  10347  frecuzrdgfunlem  10354
  Copyright terms: Public domain W3C validator