ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmodc Unicode version

Theorem exmodc 2069
Description: If existence is decidable, something exists or at most one exists. (Contributed by Jim Kingdon, 30-Jun-2018.)
Assertion
Ref Expression
exmodc  |-  (DECID  E. x ph  ->  ( E. x ph  \/  E* x ph ) )

Proof of Theorem exmodc
StepHypRef Expression
1 df-dc 830 . 2  |-  (DECID  E. x ph 
<->  ( E. x ph  \/  -.  E. x ph ) )
2 pm2.21 612 . . . 4  |-  ( -. 
E. x ph  ->  ( E. x ph  ->  E! x ph ) )
3 df-mo 2023 . . . 4  |-  ( E* x ph  <->  ( E. x ph  ->  E! x ph ) )
42, 3sylibr 133 . . 3  |-  ( -. 
E. x ph  ->  E* x ph )
54orim2i 756 . 2  |-  ( ( E. x ph  \/  -.  E. x ph )  ->  ( E. x ph  \/  E* x ph )
)
61, 5sylbi 120 1  |-  (DECID  E. x ph  ->  ( E. x ph  \/  E* x ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 703  DECID wdc 829   E.wex 1485   E!weu 2019   E*wmo 2020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 610  ax-io 704
This theorem depends on definitions:  df-bi 116  df-dc 830  df-mo 2023
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator