Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exmodc | Unicode version |
Description: If existence is decidable, something exists or at most one exists. (Contributed by Jim Kingdon, 30-Jun-2018.) |
Ref | Expression |
---|---|
exmodc | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dc 825 | . 2 DECID | |
2 | pm2.21 607 | . . . 4 | |
3 | df-mo 2018 | . . . 4 | |
4 | 2, 3 | sylibr 133 | . . 3 |
5 | 4 | orim2i 751 | . 2 |
6 | 1, 5 | sylbi 120 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wo 698 DECID wdc 824 wex 1480 weu 2014 wmo 2015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-mo 2018 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |