HomeHome Intuitionistic Logic Explorer
Theorem List (p. 14 of 140)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 1301-1400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem3orbi123d 1301 Deduction joining 3 equivalences to form equivalence of disjunctions. (Contributed by NM, 20-Apr-1994.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  ( th  <->  ta ) )   &    |-  ( ph  ->  ( et  <->  ze ) )   =>    |-  ( ph  ->  ( ( ps  \/  th  \/  et )  <->  ( ch  \/  ta 
 \/  ze ) ) )
 
Theorem3anbi123d 1302 Deduction joining 3 equivalences to form equivalence of conjunctions. (Contributed by NM, 22-Apr-1994.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  ( th  <->  ta ) )   &    |-  ( ph  ->  ( et  <->  ze ) )   =>    |-  ( ph  ->  ( ( ps  /\  th  /\ 
 et )  <->  ( ch  /\  ta 
 /\  ze ) ) )
 
Theorem3anbi12d 1303 Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  ( th  <->  ta ) )   =>    |-  ( ph  ->  ( ( ps  /\  th  /\ 
 et )  <->  ( ch  /\  ta 
 /\  et ) ) )
 
Theorem3anbi13d 1304 Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  ( th  <->  ta ) )   =>    |-  ( ph  ->  ( ( ps  /\  et  /\ 
 th )  <->  ( ch  /\  et  /\  ta ) ) )
 
Theorem3anbi23d 1305 Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  ( th  <->  ta ) )   =>    |-  ( ph  ->  ( ( et  /\  ps  /\ 
 th )  <->  ( et  /\  ch 
 /\  ta ) ) )
 
Theorem3anbi1d 1306 Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( ( ps  /\  th  /\ 
 ta )  <->  ( ch  /\  th 
 /\  ta ) ) )
 
Theorem3anbi2d 1307 Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( ( th  /\  ps  /\ 
 ta )  <->  ( th  /\  ch 
 /\  ta ) ) )
 
Theorem3anbi3d 1308 Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( ( th  /\  ta  /\ 
 ps )  <->  ( th  /\  ta 
 /\  ch ) ) )
 
Theorem3anim123d 1309 Deduction joining 3 implications to form implication of conjunctions. (Contributed by NM, 24-Feb-2005.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( ph  ->  ( th  ->  ta ) )   &    |-  ( ph  ->  ( et  ->  ze )
 )   =>    |-  ( ph  ->  (
 ( ps  /\  th  /\ 
 et )  ->  ( ch  /\  ta  /\  ze ) ) )
 
Theorem3orim123d 1310 Deduction joining 3 implications to form implication of disjunctions. (Contributed by NM, 4-Apr-1997.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( ph  ->  ( th  ->  ta ) )   &    |-  ( ph  ->  ( et  ->  ze )
 )   =>    |-  ( ph  ->  (
 ( ps  \/  th  \/  et )  ->  ( ch  \/  ta  \/  ze ) ) )
 
Theoreman6 1311 Rearrangement of 6 conjuncts. (Contributed by NM, 13-Mar-1995.)
 |-  ( ( ( ph  /\ 
 ps  /\  ch )  /\  ( th  /\  ta  /\ 
 et ) )  <->  ( ( ph  /\ 
 th )  /\  ( ps  /\  ta )  /\  ( ch  /\  et )
 ) )
 
Theorem3an6 1312 Analog of an4 576 for triple conjunction. (Contributed by Scott Fenton, 16-Mar-2011.) (Proof shortened by Andrew Salmon, 25-May-2011.)
 |-  ( ( ( ph  /\ 
 ps )  /\  ( ch  /\  th )  /\  ( ta  /\  et )
 ) 
 <->  ( ( ph  /\  ch  /\ 
 ta )  /\  ( ps  /\  th  /\  et ) ) )
 
Theorem3or6 1313 Analog of or4 761 for triple conjunction. (Contributed by Scott Fenton, 16-Mar-2011.)
 |-  ( ( ( ph  \/  ps )  \/  ( ch  \/  th )  \/  ( ta  \/  et ) )  <->  ( ( ph  \/  ch  \/  ta )  \/  ( ps  \/  th  \/  et ) ) )
 
Theoremmp3an1 1314 An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.)
 |-  ph   &    |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ps  /\  ch )  ->  th )
 
Theoremmp3an2 1315 An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.)
 |- 
 ps   &    |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ph  /\  ch )  ->  th )
 
Theoremmp3an3 1316 An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.)
 |- 
 ch   &    |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ph  /\  ps )  ->  th )
 
Theoremmp3an12 1317 An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.)
 |-  ph   &    |- 
 ps   &    |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  ( ch  ->  th )
 
Theoremmp3an13 1318 An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.)
 |-  ph   &    |- 
 ch   &    |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  ( ps  ->  th )
 
Theoremmp3an23 1319 An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.)
 |- 
 ps   &    |- 
 ch   &    |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  ( ph  ->  th )
 
Theoremmp3an1i 1320 An inference based on modus ponens. (Contributed by NM, 5-Jul-2005.)
 |- 
 ps   &    |-  ( ph  ->  (
 ( ps  /\  ch  /\ 
 th )  ->  ta )
 )   =>    |-  ( ph  ->  (
 ( ch  /\  th )  ->  ta ) )
 
Theoremmp3anl1 1321 An inference based on modus ponens. (Contributed by NM, 24-Feb-2005.)
 |-  ph   &    |-  ( ( ( ph  /\ 
 ps  /\  ch )  /\  th )  ->  ta )   =>    |-  (
 ( ( ps  /\  ch )  /\  th )  ->  ta )
 
Theoremmp3anl2 1322 An inference based on modus ponens. (Contributed by NM, 24-Feb-2005.)
 |- 
 ps   &    |-  ( ( ( ph  /\ 
 ps  /\  ch )  /\  th )  ->  ta )   =>    |-  (
 ( ( ph  /\  ch )  /\  th )  ->  ta )
 
Theoremmp3anl3 1323 An inference based on modus ponens. (Contributed by NM, 24-Feb-2005.)
 |- 
 ch   &    |-  ( ( ( ph  /\ 
 ps  /\  ch )  /\  th )  ->  ta )   =>    |-  (
 ( ( ph  /\  ps )  /\  th )  ->  ta )
 
Theoremmp3anr1 1324 An inference based on modus ponens. (Contributed by NM, 4-Nov-2006.)
 |- 
 ps   &    |-  ( ( ph  /\  ( ps  /\  ch  /\  th ) )  ->  ta )   =>    |-  (
 ( ph  /\  ( ch 
 /\  th ) )  ->  ta )
 
Theoremmp3anr2 1325 An inference based on modus ponens. (Contributed by NM, 24-Nov-2006.)
 |- 
 ch   &    |-  ( ( ph  /\  ( ps  /\  ch  /\  th ) )  ->  ta )   =>    |-  (
 ( ph  /\  ( ps 
 /\  th ) )  ->  ta )
 
Theoremmp3anr3 1326 An inference based on modus ponens. (Contributed by NM, 19-Oct-2007.)
 |- 
 th   &    |-  ( ( ph  /\  ( ps  /\  ch  /\  th ) )  ->  ta )   =>    |-  (
 ( ph  /\  ( ps 
 /\  ch ) )  ->  ta )
 
Theoremmp3an 1327 An inference based on modus ponens. (Contributed by NM, 14-May-1999.)
 |-  ph   &    |- 
 ps   &    |- 
 ch   &    |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  th
 
Theoremmpd3an3 1328 An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.)
 |-  ( ( ph  /\  ps )  ->  ch )   &    |-  ( ( ph  /\ 
 ps  /\  ch )  ->  th )   =>    |-  ( ( ph  /\  ps )  ->  th )
 
Theoremmpd3an23 1329 An inference based on modus ponens. (Contributed by NM, 4-Dec-2006.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ( ph  /\ 
 ps  /\  ch )  ->  th )   =>    |-  ( ph  ->  th )
 
Theoremmp3and 1330 A deduction based on modus ponens. (Contributed by Mario Carneiro, 24-Dec-2016.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ( ( ps  /\  ch  /\ 
 th )  ->  ta )
 )   =>    |-  ( ph  ->  ta )
 
Theoremmp3an12i 1331 mp3an 1327 with antecedents in standard conjunction form and with one hypothesis an implication. (Contributed by Alan Sare, 28-Aug-2016.)
 |-  ph   &    |- 
 ps   &    |-  ( ch  ->  th )   &    |-  (
 ( ph  /\  ps  /\  th )  ->  ta )   =>    |-  ( ch  ->  ta )
 
Theoremmp3an2i 1332 mp3an 1327 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.)
 |-  ph   &    |-  ( ps  ->  ch )   &    |-  ( ps  ->  th )   &    |-  ( ( ph  /\ 
 ch  /\  th )  ->  ta )   =>    |-  ( ps  ->  ta )
 
Theoremmp3an3an 1333 mp3an 1327 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.)
 |-  ph   &    |-  ( ps  ->  ch )   &    |-  ( th  ->  ta )   &    |-  ( ( ph  /\ 
 ch  /\  ta )  ->  et )   =>    |-  ( ( ps  /\  th )  ->  et )
 
Theoremmp3an2ani 1334 An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.)
 |-  ph   &    |-  ( ps  ->  ch )   &    |-  (
 ( ps  /\  th )  ->  ta )   &    |-  ( ( ph  /\ 
 ch  /\  ta )  ->  et )   =>    |-  ( ( ps  /\  th )  ->  et )
 
Theorembiimp3a 1335 Infer implication from a logical equivalence. Similar to biimpa 294. (Contributed by NM, 4-Sep-2005.)
 |-  ( ( ph  /\  ps )  ->  ( ch  <->  th ) )   =>    |-  ( ( ph  /\ 
 ps  /\  ch )  ->  th )
 
Theorembiimp3ar 1336 Infer implication from a logical equivalence. Similar to biimpar 295. (Contributed by NM, 2-Jan-2009.)
 |-  ( ( ph  /\  ps )  ->  ( ch  <->  th ) )   =>    |-  ( ( ph  /\ 
 ps  /\  th )  ->  ch )
 
Theorem3anandis 1337 Inference that undistributes a triple conjunction in the antecedent. (Contributed by NM, 18-Apr-2007.)
 |-  ( ( ( ph  /\ 
 ps )  /\  ( ph  /\  ch )  /\  ( ph  /\  th )
 )  ->  ta )   =>    |-  (
 ( ph  /\  ( ps 
 /\  ch  /\  th )
 )  ->  ta )
 
Theorem3anandirs 1338 Inference that undistributes a triple conjunction in the antecedent. (Contributed by NM, 25-Jul-2006.) (Revised by NM, 18-Apr-2007.)
 |-  ( ( ( ph  /\ 
 th )  /\  ( ps  /\  th )  /\  ( ch  /\  th )
 )  ->  ta )   =>    |-  (
 ( ( ph  /\  ps  /\ 
 ch )  /\  th )  ->  ta )
 
Theoremecased 1339 Deduction form of disjunctive syllogism. (Contributed by Jim Kingdon, 9-Dec-2017.)
 |-  ( ph  ->  -.  ch )   &    |-  ( ph  ->  ( ps  \/  ch ) )   =>    |-  ( ph  ->  ps )
 
Theoremecase23d 1340 Variation of ecased 1339 with three disjuncts instead of two. (Contributed by NM, 22-Apr-1994.) (Revised by Jim Kingdon, 9-Dec-2017.)
 |-  ( ph  ->  -.  ch )   &    |-  ( ph  ->  -.  th )   &    |-  ( ph  ->  ( ps  \/  ch  \/  th ) )   =>    |-  ( ph  ->  ps )
 
1.2.12  True and false constants
 
1.2.12.1  Universal quantifier for use by df-tru

Even though it is not ordinarily part of propositional calculus, the universal quantifier  A. is introduced here so that the soundness of Definition df-tru 1346 can be checked by the same algorithm that is used for predicate calculus. Its first real use is in Axiom ax-5 1435 in the predicate calculus section below. For those who want propositional calculus to be self-contained, i.e., to use wff variables only, the alternate Definition dftru2 1351 may be adopted and this subsection moved down to the start of the subsection with wex 1480 below. However, the use of dftru2 1351 as a definition requires a more elaborate definition checking algorithm that we prefer to avoid.

 
Syntaxwal 1341 Extend wff definition to include the universal quantifier ("for all").  A. x ph is read " ph (phi) is true for all  x". Typically, in its final application 
ph would be replaced with a wff containing a (free) occurrence of the variable  x, for example  x  =  y. In a universe with a finite number of objects, "for all" is equivalent to a big conjunction (AND) with one wff for each possible case of  x. When the universe is infinite (as with set theory), such a propositional-calculus equivalent is not possible because an infinitely long formula has no meaning, but conceptually the idea is the same.
 wff  A. x ph
 
1.2.12.2  Equality predicate for use by df-tru

Even though it is not ordinarily part of propositional calculus, the equality predicate  = is introduced here so that the soundness of definition df-tru 1346 can be checked by the same algorithm as is used for predicate calculus. Its first real use is in Axiom ax-8 1492 in the predicate calculus section below. For those who want propositional calculus to be self-contained, i.e., to use wff variables only, the alternate definition dftru2 1351 may be adopted and this subsection moved down to just above weq 1491 below. However, the use of dftru2 1351 as a definition requires a more elaborate definition checking algorithm that we prefer to avoid.

 
Syntaxcv 1342 This syntax construction states that a variable  x, which has been declared to be a setvar variable by $f statement vx, is also a class expression. This can be justified informally as follows. We know that the class builder  { y  |  y  e.  x } is a class by cab 2151. Since (when  y is distinct from  x) we have  x  =  { y  |  y  e.  x } by cvjust 2160, we can argue that the syntax " class  x " can be viewed as an abbreviation for "
class  { y  |  y  e.  x }". See the discussion under the definition of class in [Jech] p. 4 showing that "Every set can be considered to be a class."

While it is tempting and perhaps occasionally useful to view cv 1342 as a "type conversion" from a setvar variable to a class variable, keep in mind that cv 1342 is intrinsically no different from any other class-building syntax such as cab 2151, cun 3114, or c0 3409.

For a general discussion of the theory of classes and the role of cv 1342, see https://us.metamath.org/mpeuni/mmset.html#class 1342.

(The description above applies to set theory, not predicate calculus. The purpose of introducing  class  x here, and not in set theory where it belongs, is to allow us to express i.e. "prove" the weq 1491 of predicate calculus from the wceq 1343 of set theory, so that we don't overload the  = connective with two syntax definitions. This is done to prevent ambiguity that would complicate some Metamath parsers.)

 class  x
 
Syntaxwceq 1343 Extend wff definition to include class equality.

For a general discussion of the theory of classes, see https://us.metamath.org/mpeuni/mmset.html#class.

(The purpose of introducing 
wff  A  =  B here, and not in set theory where it belongs, is to allow us to express i.e. "prove" the weq 1491 of predicate calculus in terms of the wceq 1343 of set theory, so that we don't "overload" the  = connective with two syntax definitions. This is done to prevent ambiguity that would complicate some Metamath parsers. For example, some parsers - although not the Metamath program - stumble on the fact that the  = in  x  =  y could be the  = of either weq 1491 or wceq 1343, although mathematically it makes no difference. The class variables  A and  B are introduced temporarily for the purpose of this definition but otherwise not used in predicate calculus. See df-cleq 2158 for more information on the set theory usage of wceq 1343.)

 wff  A  =  B
 
1.2.12.3  Define the true and false constants
 
Syntaxwtru 1344 T. is a wff.
 wff T.
 
Theoremtrujust 1345 Soundness justification theorem for df-tru 1346. (Contributed by Mario Carneiro, 17-Nov-2013.) (Revised by NM, 11-Jul-2019.)
 |-  ( ( A. x  x  =  x  ->  A. x  x  =  x )  <->  ( A. y  y  =  y  ->  A. y  y  =  y ) )
 
Definitiondf-tru 1346 Definition of the truth value "true", or "verum", denoted by T.. This is a tautology, as proved by tru 1347. In this definition, an instance of id 19 is used as the definiens, although any tautology, such as an axiom, can be used in its place. This particular id 19 instance was chosen so this definition can be checked by the same algorithm that is used for predicate calculus. This definition should be referenced directly only by tru 1347, and other proofs should depend on tru 1347 (directly or indirectly) instead of this definition, since there are many alternate ways to define T.. (Contributed by Anthony Hart, 13-Oct-2010.) (Revised by NM, 11-Jul-2019.) (New usage is discouraged.)
 |-  ( T.  <->  ( A. x  x  =  x  ->  A. x  x  =  x ) )
 
Theoremtru 1347 The truth value T. is provable. (Contributed by Anthony Hart, 13-Oct-2010.)
 |- T.
 
Syntaxwfal 1348 F. is a wff.
 wff F.
 
Definitiondf-fal 1349 Definition of the truth value "false", or "falsum", denoted by F.. See also df-tru 1346. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( F.  <->  -. T.  )
 
Theoremfal 1350 The truth value F. is refutable. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Mel L. O'Cat, 11-Mar-2012.)
 |- 
 -. F.
 
Theoremdftru2 1351 An alternate definition of "true". (Contributed by Anthony Hart, 13-Oct-2010.) (Revised by BJ, 12-Jul-2019.) (New usage is discouraged.)
 |-  ( T.  <->  ( ph  ->  ph ) )
 
Theoremmptru 1352 Eliminate T. as an antecedent. A proposition implied by T. is true. (Contributed by Mario Carneiro, 13-Mar-2014.)
 |-  ( T.  ->  ph )   =>    |-  ph
 
Theoremtbtru 1353 A proposition is equivalent to itself being equivalent to T.. (Contributed by Anthony Hart, 14-Aug-2011.)
 |-  ( ph  <->  ( ph  <-> T.  ) )
 
Theoremnbfal 1354 The negation of a proposition is equivalent to itself being equivalent to F.. (Contributed by Anthony Hart, 14-Aug-2011.)
 |-  ( -.  ph  <->  ( ph  <-> F.  ) )
 
Theorembitru 1355 A theorem is equivalent to truth. (Contributed by Mario Carneiro, 9-May-2015.)
 |-  ph   =>    |-  ( ph  <-> T.  )
 
Theorembifal 1356 A contradiction is equivalent to falsehood. (Contributed by Mario Carneiro, 9-May-2015.)
 |- 
 -.  ph   =>    |-  ( ph  <-> F.  )
 
Theoremfalim 1357 The truth value F. implies anything. Also called the principle of explosion, or "ex falso quodlibet". (Contributed by FL, 20-Mar-2011.) (Proof shortened by Anthony Hart, 1-Aug-2011.)
 |-  ( F.  ->  ph )
 
Theoremfalimd 1358 The truth value F. implies anything. (Contributed by Mario Carneiro, 9-Feb-2017.)
 |-  ( ( ph  /\ F.  )  ->  ps )
 
Theorema1tru 1359 Anything implies T.. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Anthony Hart, 1-Aug-2011.)
 |-  ( ph  -> T.  )
 
Theoremtruan 1360 True can be removed from a conjunction. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Wolf Lammen, 21-Jul-2019.)
 |-  ( ( T.  /\  ph )  <->  ph )
 
Theoremdfnot 1361 Given falsum, we can define the negation of a wff  ph as the statement that a contradiction follows from assuming  ph. (Contributed by Mario Carneiro, 9-Feb-2017.) (Proof shortened by Wolf Lammen, 21-Jul-2019.)
 |-  ( -.  ph  <->  ( ph  -> F.  ) )
 
Theoreminegd 1362 Negation introduction rule from natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.)
 |-  ( ( ph  /\  ps )  -> F.  )   =>    |-  ( ph  ->  -. 
 ps )
 
Theorempm2.21fal 1363 If a wff and its negation are provable, then falsum is provable. (Contributed by Mario Carneiro, 9-Feb-2017.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  -.  ps )   =>    |-  ( ph  -> F.  )
 
Theorempclem6 1364 Negation inferred from embedded conjunct. (Contributed by NM, 20-Aug-1993.) (Proof rewritten by Jim Kingdon, 4-May-2018.)
 |-  ( ( ph  <->  ( ps  /\  -.  ph ) )  ->  -.  ps )
 
1.2.13  Logical 'xor'
 
Syntaxwxo 1365 Extend wff definition to include exclusive disjunction ('xor').
 wff  ( ph  \/_  ps )
 
Definitiondf-xor 1366 Define exclusive disjunction (logical 'xor'). Return true if either the left or right, but not both, are true. Contrast with  /\ (wa 103),  \/ (wo 698), and  -> (wi 4) . (Contributed by FL, 22-Nov-2010.) (Modified by Jim Kingdon, 1-Mar-2018.)
 |-  ( ( ph  \/_  ps ) 
 <->  ( ( ph  \/  ps )  /\  -.  ( ph  /\  ps ) ) )
 
Theoremxoranor 1367 One way of defining exclusive or. Equivalent to df-xor 1366. (Contributed by Jim Kingdon and Mario Carneiro, 1-Mar-2018.)
 |-  ( ( ph  \/_  ps ) 
 <->  ( ( ph  \/  ps )  /\  ( -.  ph  \/  -.  ps )
 ) )
 
Theoremexcxor 1368 This tautology shows that xor is really exclusive. (Contributed by FL, 22-Nov-2010.) (Proof rewritten by Jim Kingdon, 5-May-2018.)
 |-  ( ( ph  \/_  ps ) 
 <->  ( ( ph  /\  -.  ps )  \/  ( -.  ph  /\  ps ) ) )
 
Theoremxoror 1369 XOR implies OR. (Contributed by BJ, 19-Apr-2019.)
 |-  ( ( ph  \/_  ps )  ->  ( ph  \/  ps ) )
 
Theoremxorbi2d 1370 Deduction joining an equivalence and a left operand to form equivalence of exclusive-or. (Contributed by Jim Kingdon, 7-Oct-2018.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( ( th  \/_  ps ) 
 <->  ( th  \/_  ch ) ) )
 
Theoremxorbi1d 1371 Deduction joining an equivalence and a right operand to form equivalence of exclusive-or. (Contributed by Jim Kingdon, 7-Oct-2018.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( ( ps  \/_  th )  <->  ( ch  \/_  th )
 ) )
 
Theoremxorbi12d 1372 Deduction joining two equivalences to form equivalence of exclusive-or. (Contributed by Jim Kingdon, 7-Oct-2018.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  ( th  <->  ta ) )   =>    |-  ( ph  ->  ( ( ps  \/_  th )  <->  ( ch  \/_  ta )
 ) )
 
Theoremxorbi12i 1373 Equality property for XOR. (Contributed by Mario Carneiro, 4-Sep-2016.)
 |-  ( ph  <->  ps )   &    |-  ( ch  <->  th )   =>    |-  ( ( ph  \/_  ch ) 
 <->  ( ps  \/_  th )
 )
 
Theoremxorbin 1374 A consequence of exclusive or. In classical logic the converse also holds. (Contributed by Jim Kingdon, 8-Mar-2018.)
 |-  ( ( ph  \/_  ps )  ->  ( ph  <->  -.  ps ) )
 
Theorempm5.18im 1375 One direction of pm5.18dc 873, which holds for all propositions, not just decidable propositions. (Contributed by Jim Kingdon, 10-Mar-2018.)
 |-  ( ( ph  <->  ps )  ->  -.  ( ph 
 <->  -.  ps ) )
 
Theoremxornbi 1376 A consequence of exclusive or. For decidable propositions this is an equivalence, as seen at xornbidc 1381. (Contributed by Jim Kingdon, 10-Mar-2018.)
 |-  ( ( ph  \/_  ps )  ->  -.  ( ph  <->  ps ) )
 
Theoremxor3dc 1377 Two ways to express "exclusive or" between decidable propositions. (Contributed by Jim Kingdon, 12-Apr-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( -.  ( ph 
 <->  ps )  <->  ( ph  <->  -.  ps ) ) ) )
 
Theoremxorcom 1378  \/_ is commutative. (Contributed by David A. Wheeler, 6-Oct-2018.)
 |-  ( ( ph  \/_  ps ) 
 <->  ( ps  \/_  ph )
 )
 
Theorempm5.15dc 1379 A decidable proposition is equivalent to a decidable proposition or its negation. Based on theorem *5.15 of [WhiteheadRussell] p. 124. (Contributed by Jim Kingdon, 18-Apr-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( ( ph  <->  ps )  \/  ( ph  <->  -.  ps ) ) ) )
 
Theoremxor2dc 1380 Two ways to express "exclusive or" between decidable propositions. (Contributed by Jim Kingdon, 17-Apr-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( -.  ( ph 
 <->  ps )  <->  ( ( ph  \/  ps )  /\  -.  ( ph  /\  ps )
 ) ) ) )
 
Theoremxornbidc 1381 Exclusive or is equivalent to negated biconditional for decidable propositions. (Contributed by Jim Kingdon, 27-Apr-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( ( ph  \/_ 
 ps )  <->  -.  ( ph  <->  ps ) ) ) )
 
Theoremxordc 1382 Two ways to express "exclusive or" between decidable propositions. Theorem *5.22 of [WhiteheadRussell] p. 124, but for decidable propositions. (Contributed by Jim Kingdon, 5-May-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( -.  ( ph 
 <->  ps )  <->  ( ( ph  /\ 
 -.  ps )  \/  ( ps  /\  -.  ph )
 ) ) ) )
 
Theoremxordc1 1383 Exclusive or implies the left proposition is decidable. (Contributed by Jim Kingdon, 12-Mar-2018.)
 |-  ( ( ph  \/_  ps )  -> DECID  ph )
 
Theoremnbbndc 1384 Move negation outside of biconditional, for decidable propositions. Compare Theorem *5.18 of [WhiteheadRussell] p. 124. (Contributed by Jim Kingdon, 18-Apr-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( ( -.  ph 
 <->  ps )  <->  -.  ( ph  <->  ps ) ) ) )
 
Theorembiassdc 1385 Associative law for the biconditional, for decidable propositions.

The classical version (without the decidability conditions) is an axiom of system DS in Vladimir Lifschitz, "On calculational proofs", Annals of Pure and Applied Logic, 113:207-224, 2002, http://www.cs.utexas.edu/users/ai-lab/pub-view.php?PubID=26805, and, interestingly, was not included in Principia Mathematica but was apparently first noted by Jan Lukasiewicz circa 1923. (Contributed by Jim Kingdon, 4-May-2018.)

 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  (DECID 
 ch  ->  ( ( (
 ph 
 <->  ps )  <->  ch )  <->  ( ph  <->  ( ps  <->  ch ) ) ) ) ) )
 
Theorembilukdc 1386 Lukasiewicz's shortest axiom for equivalential calculus (but modified to require decidable propositions). Storrs McCall, ed., Polish Logic 1920-1939 (Oxford, 1967), p. 96. (Contributed by Jim Kingdon, 5-May-2018.)
 |-  ( ( (DECID  ph  /\ DECID  ps )  /\ DECID  ch )  ->  ( ( ph 
 <->  ps )  <->  ( ( ch  <->  ps )  <->  ( ph  <->  ch ) ) ) )
 
Theoremdfbi3dc 1387 An alternate definition of the biconditional for decidable propositions. Theorem *5.23 of [WhiteheadRussell] p. 124, but with decidability conditions. (Contributed by Jim Kingdon, 5-May-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( ( ph  <->  ps ) 
 <->  ( ( ph  /\  ps )  \/  ( -.  ph  /\ 
 -.  ps ) ) ) ) )
 
Theorempm5.24dc 1388 Theorem *5.24 of [WhiteheadRussell] p. 124, but for decidable propositions. (Contributed by Jim Kingdon, 5-May-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( -.  (
 ( ph  /\  ps )  \/  ( -.  ph  /\  -.  ps ) )  <->  ( ( ph  /\ 
 -.  ps )  \/  ( ps  /\  -.  ph )
 ) ) ) )
 
Theoremxordidc 1389 Conjunction distributes over exclusive-or, for decidable propositions. This is one way to interpret the distributive law of multiplication over addition in modulo 2 arithmetic. (Contributed by Jim Kingdon, 14-Jul-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  (DECID 
 ch  ->  ( ( ph  /\  ( ps  \/_  ch ) )  <->  ( ( ph  /\ 
 ps )  \/_  ( ph  /\  ch ) ) ) ) ) )
 
Theoremanxordi 1390 Conjunction distributes over exclusive-or. (Contributed by Mario Carneiro and Jim Kingdon, 7-Oct-2018.)
 |-  ( ( ph  /\  ( ps  \/_  ch ) )  <-> 
 ( ( ph  /\  ps )  \/_  ( ph  /\  ch ) ) )
 
1.2.14  Truth tables: Operations on true and false constants

For classical logic, truth tables can be used to define propositional logic operations, by showing the results of those operations for all possible combinations of true (T.) and false (F.).

Although the intuitionistic logic connectives are not as simply defined, T. and F. do play similar roles as in classical logic and most theorems from classical logic continue to hold.

Here we show that our definitions and axioms produce equivalent results for T. and F. as we would get from truth tables for  /\ (conjunction aka logical 'and') wa 103,  \/ (disjunction aka logical inclusive 'or') wo 698,  -> (implies) wi 4,  -. (not) wn 3,  <-> (logical equivalence) df-bi 116, and  \/_ (exclusive or) df-xor 1366.

 
Theoremtruantru 1391 A  /\ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( ( T.  /\ T.  )  <-> T.  )
 
Theoremtruanfal 1392 A  /\ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( ( T.  /\ F.  )  <-> F.  )
 
Theoremfalantru 1393 A  /\ identity. (Contributed by David A. Wheeler, 23-Feb-2018.)
 |-  ( ( F.  /\ T.  )  <-> F.  )
 
Theoremfalanfal 1394 A  /\ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( ( F.  /\ F.  )  <-> F.  )
 
Theoremtruortru 1395 A  \/ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( ( T.  \/ T.  )  <-> T.  )
 
Theoremtruorfal 1396 A  \/ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( ( T.  \/ F.  )  <-> T.  )
 
Theoremfalortru 1397 A  \/ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( ( F.  \/ T.  )  <-> T.  )
 
Theoremfalorfal 1398 A  \/ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( ( F.  \/ F.  )  <-> F.  )
 
Theoremtruimtru 1399 A  -> identity. (Contributed by Anthony Hart, 22-Oct-2010.)
 |-  ( ( T.  -> T.  )  <-> T.  )
 
Theoremtruimfal 1400 A  -> identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( ( T.  -> F.  )  <-> F.  )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >