HomeHome Intuitionistic Logic Explorer
Theorem List (p. 14 of 165)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 1301-1400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsyl323anc 1301 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ph  ->  ze )   &    |-  ( ph  ->  si )   &    |-  ( ph  ->  rh )   &    |-  ( ( ( ps  /\  ch  /\  th )  /\  ( ta 
 /\  et )  /\  ( ze  /\  si  /\  rh )
 )  ->  mu )   =>    |-  ( ph  ->  mu )
 
Theoremsyl332anc 1302 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ph  ->  ze )   &    |-  ( ph  ->  si )   &    |-  ( ph  ->  rh )   &    |-  ( ( ( ps  /\  ch  /\  th )  /\  ( ta 
 /\  et  /\  ze )  /\  ( si  /\  rh ) )  ->  mu )   =>    |-  ( ph  ->  mu )
 
Theoremsyl333anc 1303 A syllogism inference combined with contraction. (Contributed by NM, 10-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ph  ->  ze )   &    |-  ( ph  ->  si )   &    |-  ( ph  ->  rh )   &    |-  ( ph  ->  mu )   &    |-  ( ( ( ps  /\  ch  /\  th )  /\  ( ta 
 /\  et  /\  ze )  /\  ( si  /\  rh  /\ 
 mu ) )  ->  la )   =>    |-  ( ph  ->  la )
 
Theoremsyl3an1 1304 A syllogism inference. (Contributed by NM, 22-Aug-1995.)
 |-  ( ph  ->  ps )   &    |-  (
 ( ps  /\  ch  /\ 
 th )  ->  ta )   =>    |-  (
 ( ph  /\  ch  /\  th )  ->  ta )
 
Theoremsyl3an2 1305 A syllogism inference. (Contributed by NM, 22-Aug-1995.)
 |-  ( ph  ->  ch )   &    |-  (
 ( ps  /\  ch  /\ 
 th )  ->  ta )   =>    |-  (
 ( ps  /\  ph  /\  th )  ->  ta )
 
Theoremsyl3an3 1306 A syllogism inference. (Contributed by NM, 22-Aug-1995.)
 |-  ( ph  ->  th )   &    |-  (
 ( ps  /\  ch  /\ 
 th )  ->  ta )   =>    |-  (
 ( ps  /\  ch  /\  ph )  ->  ta )
 
Theoremsyl3an1b 1307 A syllogism inference. (Contributed by NM, 22-Aug-1995.)
 |-  ( ph  <->  ps )   &    |-  ( ( ps 
 /\  ch  /\  th )  ->  ta )   =>    |-  ( ( ph  /\  ch  /\ 
 th )  ->  ta )
 
Theoremsyl3an2b 1308 A syllogism inference. (Contributed by NM, 22-Aug-1995.)
 |-  ( ph  <->  ch )   &    |-  ( ( ps 
 /\  ch  /\  th )  ->  ta )   =>    |-  ( ( ps  /\  ph 
 /\  th )  ->  ta )
 
Theoremsyl3an3b 1309 A syllogism inference. (Contributed by NM, 22-Aug-1995.)
 |-  ( ph  <->  th )   &    |-  ( ( ps 
 /\  ch  /\  th )  ->  ta )   =>    |-  ( ( ps  /\  ch 
 /\  ph )  ->  ta )
 
Theoremsyl3an1br 1310 A syllogism inference. (Contributed by NM, 22-Aug-1995.)
 |-  ( ps  <->  ph )   &    |-  ( ( ps 
 /\  ch  /\  th )  ->  ta )   =>    |-  ( ( ph  /\  ch  /\ 
 th )  ->  ta )
 
Theoremsyl3an2br 1311 A syllogism inference. (Contributed by NM, 22-Aug-1995.)
 |-  ( ch  <->  ph )   &    |-  ( ( ps 
 /\  ch  /\  th )  ->  ta )   =>    |-  ( ( ps  /\  ph 
 /\  th )  ->  ta )
 
Theoremsyl3an3br 1312 A syllogism inference. (Contributed by NM, 22-Aug-1995.)
 |-  ( th  <->  ph )   &    |-  ( ( ps 
 /\  ch  /\  th )  ->  ta )   =>    |-  ( ( ps  /\  ch 
 /\  ph )  ->  ta )
 
Theoremsyl3an 1313 A triple syllogism inference. (Contributed by NM, 13-May-2004.)
 |-  ( ph  ->  ps )   &    |-  ( ch  ->  th )   &    |-  ( ta  ->  et )   &    |-  ( ( ps 
 /\  th  /\  et )  ->  ze )   =>    |-  ( ( ph  /\  ch  /\ 
 ta )  ->  ze )
 
Theoremsyl3anb 1314 A triple syllogism inference. (Contributed by NM, 15-Oct-2005.)
 |-  ( ph  <->  ps )   &    |-  ( ch  <->  th )   &    |-  ( ta  <->  et )   &    |-  ( ( ps 
 /\  th  /\  et )  ->  ze )   =>    |-  ( ( ph  /\  ch  /\ 
 ta )  ->  ze )
 
Theoremsyl3anbr 1315 A triple syllogism inference. (Contributed by NM, 29-Dec-2011.)
 |-  ( ps  <->  ph )   &    |-  ( th  <->  ch )   &    |-  ( et  <->  ta )   &    |-  ( ( ps 
 /\  th  /\  et )  ->  ze )   =>    |-  ( ( ph  /\  ch  /\ 
 ta )  ->  ze )
 
Theoremsyld3an3 1316 A syllogism inference. (Contributed by NM, 20-May-2007.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   &    |-  (
 ( ph  /\  ps  /\  th )  ->  ta )   =>    |-  (
 ( ph  /\  ps  /\  ch )  ->  ta )
 
Theoremsyld3an1 1317 A syllogism inference. (Contributed by NM, 7-Jul-2008.)
 |-  ( ( ch  /\  ps 
 /\  th )  ->  ph )   &    |-  (
 ( ph  /\  ps  /\  th )  ->  ta )   =>    |-  (
 ( ch  /\  ps  /\ 
 th )  ->  ta )
 
Theoremsyld3an2 1318 A syllogism inference. (Contributed by NM, 20-May-2007.)
 |-  ( ( ph  /\  ch  /\ 
 th )  ->  ps )   &    |-  (
 ( ph  /\  ps  /\  th )  ->  ta )   =>    |-  (
 ( ph  /\  ch  /\  th )  ->  ta )
 
Theoremsyl3anl1 1319 A syllogism inference. (Contributed by NM, 24-Feb-2005.)
 |-  ( ph  ->  ps )   &    |-  (
 ( ( ps  /\  ch 
 /\  th )  /\  ta )  ->  et )   =>    |-  ( ( (
 ph  /\  ch  /\  th )  /\  ta )  ->  et )
 
Theoremsyl3anl2 1320 A syllogism inference. (Contributed by NM, 24-Feb-2005.)
 |-  ( ph  ->  ch )   &    |-  (
 ( ( ps  /\  ch 
 /\  th )  /\  ta )  ->  et )   =>    |-  ( ( ( ps  /\  ph  /\  th )  /\  ta )  ->  et )
 
Theoremsyl3anl3 1321 A syllogism inference. (Contributed by NM, 24-Feb-2005.)
 |-  ( ph  ->  th )   &    |-  (
 ( ( ps  /\  ch 
 /\  th )  /\  ta )  ->  et )   =>    |-  ( ( ( ps  /\  ch  /\  ph )  /\  ta )  ->  et )
 
Theoremsyl3anl 1322 A triple syllogism inference. (Contributed by NM, 24-Dec-2006.)
 |-  ( ph  ->  ps )   &    |-  ( ch  ->  th )   &    |-  ( ta  ->  et )   &    |-  ( ( ( ps  /\  th  /\  et )  /\  ze )  ->  si )   =>    |-  ( ( ( ph  /\ 
 ch  /\  ta )  /\  ze )  ->  si )
 
Theoremsyl3anr1 1323 A syllogism inference. (Contributed by NM, 31-Jul-2007.)
 |-  ( ph  ->  ps )   &    |-  (
 ( ch  /\  ( ps  /\  th  /\  ta ) )  ->  et )   =>    |-  (
 ( ch  /\  ( ph  /\  th  /\  ta ) )  ->  et )
 
Theoremsyl3anr2 1324 A syllogism inference. (Contributed by NM, 1-Aug-2007.)
 |-  ( ph  ->  th )   &    |-  (
 ( ch  /\  ( ps  /\  th  /\  ta ) )  ->  et )   =>    |-  (
 ( ch  /\  ( ps  /\  ph  /\  ta )
 )  ->  et )
 
Theoremsyl3anr3 1325 A syllogism inference. (Contributed by NM, 23-Aug-2007.)
 |-  ( ph  ->  ta )   &    |-  (
 ( ch  /\  ( ps  /\  th  /\  ta ) )  ->  et )   =>    |-  (
 ( ch  /\  ( ps  /\  th  /\  ph )
 )  ->  et )
 
Theoremsyldbl2 1326 Stacked hypotheseis implies goal. (Contributed by Stanislas Polu, 9-Mar-2020.)
 |-  ( ( ph  /\  ps )  ->  ( ps  ->  th ) )   =>    |-  ( ( ph  /\  ps )  ->  th )
 
Theorem3impdi 1327 Importation inference (undistribute conjunction). (Contributed by NM, 14-Aug-1995.)
 |-  ( ( ( ph  /\ 
 ps )  /\  ( ph  /\  ch ) ) 
 ->  th )   =>    |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )
 
Theorem3impdir 1328 Importation inference (undistribute conjunction). (Contributed by NM, 20-Aug-1995.)
 |-  ( ( ( ph  /\ 
 ps )  /\  ( ch  /\  ps ) ) 
 ->  th )   =>    |-  ( ( ph  /\  ch  /\ 
 ps )  ->  th )
 
Theorem3anidm12 1329 Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.)
 |-  ( ( ph  /\  ph  /\  ps )  ->  ch )   =>    |-  ( ( ph  /\  ps )  ->  ch )
 
Theorem3anidm13 1330 Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.)
 |-  ( ( ph  /\  ps  /\  ph )  ->  ch )   =>    |-  (
 ( ph  /\  ps )  ->  ch )
 
Theorem3anidm23 1331 Inference from idempotent law for conjunction. (Contributed by NM, 1-Feb-2007.)
 |-  ( ( ph  /\  ps  /\ 
 ps )  ->  ch )   =>    |-  (
 ( ph  /\  ps )  ->  ch )
 
Theoremsyl2an3an 1332 syl3an 1313 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( th  ->  ta )   &    |-  ( ( ps 
 /\  ch  /\  ta )  ->  et )   =>    |-  ( ( ph  /\  th )  ->  et )
 
Theoremsyl2an23an 1333 Deduction related to syl3an 1313 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ( th  /\  ph )  ->  ta )   &    |-  (
 ( ps  /\  ch  /\ 
 ta )  ->  et )   =>    |-  (
 ( th  /\  ph )  ->  et )
 
Theorem3ori 1334 Infer implication from triple disjunction. (Contributed by NM, 26-Sep-2006.)
 |-  ( ph  \/  ps  \/  ch )   =>    |-  ( ( -.  ph  /\ 
 -.  ps )  ->  ch )
 
Theorem3jao 1335 Disjunction of 3 antecedents. (Contributed by NM, 8-Apr-1994.)
 |-  ( ( ( ph  ->  ps )  /\  ( ch  ->  ps )  /\  ( th  ->  ps ) )  ->  ( ( ph  \/  ch 
 \/  th )  ->  ps )
 )
 
Theorem3jaob 1336 Disjunction of 3 antecedents. (Contributed by NM, 13-Sep-2011.)
 |-  ( ( ( ph  \/  ch  \/  th )  ->  ps )  <->  ( ( ph  ->  ps )  /\  ( ch  ->  ps )  /\  ( th  ->  ps ) ) )
 
Theorem3jaoi 1337 Disjunction of 3 antecedents (inference). (Contributed by NM, 12-Sep-1995.)
 |-  ( ph  ->  ps )   &    |-  ( ch  ->  ps )   &    |-  ( th  ->  ps )   =>    |-  ( ( ph  \/  ch 
 \/  th )  ->  ps )
 
Theorem3jaod 1338 Disjunction of 3 antecedents (deduction). (Contributed by NM, 14-Oct-2005.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( ph  ->  ( th  ->  ch ) )   &    |-  ( ph  ->  ( ta  ->  ch )
 )   =>    |-  ( ph  ->  (
 ( ps  \/  th  \/  ta )  ->  ch )
 )
 
Theorem3jaoian 1339 Disjunction of 3 antecedents (inference). (Contributed by NM, 14-Oct-2005.)
 |-  ( ( ph  /\  ps )  ->  ch )   &    |-  ( ( th  /\ 
 ps )  ->  ch )   &    |-  (
 ( ta  /\  ps )  ->  ch )   =>    |-  ( ( ( ph  \/  th  \/  ta )  /\  ps )  ->  ch )
 
Theorem3jaodan 1340 Disjunction of 3 antecedents (deduction). (Contributed by NM, 14-Oct-2005.)
 |-  ( ( ph  /\  ps )  ->  ch )   &    |-  ( ( ph  /\ 
 th )  ->  ch )   &    |-  (
 ( ph  /\  ta )  ->  ch )   =>    |-  ( ( ph  /\  ( ps  \/  th  \/  ta ) )  ->  ch )
 
Theoremmpjao3dan 1341 Eliminate a 3-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.)
 |-  ( ( ph  /\  ps )  ->  ch )   &    |-  ( ( ph  /\ 
 th )  ->  ch )   &    |-  (
 ( ph  /\  ta )  ->  ch )   &    |-  ( ph  ->  ( ps  \/  th  \/  ta ) )   =>    |-  ( ph  ->  ch )
 
Theorem3jaao 1342 Inference conjoining and disjoining the antecedents of three implications. (Contributed by Jeff Hankins, 15-Aug-2009.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( th  ->  ( ta  ->  ch ) )   &    |-  ( et  ->  ( ze  ->  ch )
 )   =>    |-  ( ( ph  /\  th  /\ 
 et )  ->  (
 ( ps  \/  ta  \/  ze )  ->  ch )
 )
 
Theorem3ianorr 1343 Triple disjunction implies negated triple conjunction. (Contributed by Jim Kingdon, 23-Dec-2018.)
 |-  ( ( -.  ph  \/  -.  ps  \/  -.  ch )  ->  -.  ( ph  /\  ps  /\  ch ) )
 
Theoremsyl3an9b 1344 Nested syllogism inference conjoining 3 dissimilar antecedents. (Contributed by NM, 1-May-1995.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( th  ->  ( ch  <->  ta ) )   &    |-  ( et  ->  ( ta  <->  ze ) )   =>    |-  ( ( ph  /\ 
 th  /\  et )  ->  ( ps  <->  ze ) )
 
Theorem3orbi123d 1345 Deduction joining 3 equivalences to form equivalence of disjunctions. (Contributed by NM, 20-Apr-1994.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  ( th  <->  ta ) )   &    |-  ( ph  ->  ( et  <->  ze ) )   =>    |-  ( ph  ->  ( ( ps  \/  th  \/  et )  <->  ( ch  \/  ta 
 \/  ze ) ) )
 
Theorem3anbi123d 1346 Deduction joining 3 equivalences to form equivalence of conjunctions. (Contributed by NM, 22-Apr-1994.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  ( th  <->  ta ) )   &    |-  ( ph  ->  ( et  <->  ze ) )   =>    |-  ( ph  ->  ( ( ps  /\  th  /\ 
 et )  <->  ( ch  /\  ta 
 /\  ze ) ) )
 
Theorem3anbi12d 1347 Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  ( th  <->  ta ) )   =>    |-  ( ph  ->  ( ( ps  /\  th  /\ 
 et )  <->  ( ch  /\  ta 
 /\  et ) ) )
 
Theorem3anbi13d 1348 Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  ( th  <->  ta ) )   =>    |-  ( ph  ->  ( ( ps  /\  et  /\ 
 th )  <->  ( ch  /\  et  /\  ta ) ) )
 
Theorem3anbi23d 1349 Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  ( th  <->  ta ) )   =>    |-  ( ph  ->  ( ( et  /\  ps  /\ 
 th )  <->  ( et  /\  ch 
 /\  ta ) ) )
 
Theorem3anbi1d 1350 Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( ( ps  /\  th  /\ 
 ta )  <->  ( ch  /\  th 
 /\  ta ) ) )
 
Theorem3anbi2d 1351 Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( ( th  /\  ps  /\ 
 ta )  <->  ( th  /\  ch 
 /\  ta ) ) )
 
Theorem3anbi3d 1352 Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( ( th  /\  ta  /\ 
 ps )  <->  ( th  /\  ta 
 /\  ch ) ) )
 
Theorem3anim123d 1353 Deduction joining 3 implications to form implication of conjunctions. (Contributed by NM, 24-Feb-2005.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( ph  ->  ( th  ->  ta ) )   &    |-  ( ph  ->  ( et  ->  ze )
 )   =>    |-  ( ph  ->  (
 ( ps  /\  th  /\ 
 et )  ->  ( ch  /\  ta  /\  ze ) ) )
 
Theorem3orim123d 1354 Deduction joining 3 implications to form implication of disjunctions. (Contributed by NM, 4-Apr-1997.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( ph  ->  ( th  ->  ta ) )   &    |-  ( ph  ->  ( et  ->  ze )
 )   =>    |-  ( ph  ->  (
 ( ps  \/  th  \/  et )  ->  ( ch  \/  ta  \/  ze ) ) )
 
Theoreman6 1355 Rearrangement of 6 conjuncts. (Contributed by NM, 13-Mar-1995.)
 |-  ( ( ( ph  /\ 
 ps  /\  ch )  /\  ( th  /\  ta  /\ 
 et ) )  <->  ( ( ph  /\ 
 th )  /\  ( ps  /\  ta )  /\  ( ch  /\  et )
 ) )
 
Theorem3an6 1356 Analog of an4 586 for triple conjunction. (Contributed by Scott Fenton, 16-Mar-2011.) (Proof shortened by Andrew Salmon, 25-May-2011.)
 |-  ( ( ( ph  /\ 
 ps )  /\  ( ch  /\  th )  /\  ( ta  /\  et )
 ) 
 <->  ( ( ph  /\  ch  /\ 
 ta )  /\  ( ps  /\  th  /\  et ) ) )
 
Theorem3or6 1357 Analog of or4 776 for triple conjunction. (Contributed by Scott Fenton, 16-Mar-2011.)
 |-  ( ( ( ph  \/  ps )  \/  ( ch  \/  th )  \/  ( ta  \/  et ) )  <->  ( ( ph  \/  ch  \/  ta )  \/  ( ps  \/  th  \/  et ) ) )
 
Theoremmp3an1 1358 An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.)
 |-  ph   &    |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ps  /\  ch )  ->  th )
 
Theoremmp3an2 1359 An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.)
 |- 
 ps   &    |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ph  /\  ch )  ->  th )
 
Theoremmp3an3 1360 An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.)
 |- 
 ch   &    |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ph  /\  ps )  ->  th )
 
Theoremmp3an12 1361 An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.)
 |-  ph   &    |- 
 ps   &    |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  ( ch  ->  th )
 
Theoremmp3an13 1362 An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.)
 |-  ph   &    |- 
 ch   &    |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  ( ps  ->  th )
 
Theoremmp3an23 1363 An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.)
 |- 
 ps   &    |- 
 ch   &    |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  ( ph  ->  th )
 
Theoremmp3an1i 1364 An inference based on modus ponens. (Contributed by NM, 5-Jul-2005.)
 |- 
 ps   &    |-  ( ph  ->  (
 ( ps  /\  ch  /\ 
 th )  ->  ta )
 )   =>    |-  ( ph  ->  (
 ( ch  /\  th )  ->  ta ) )
 
Theoremmp3anl1 1365 An inference based on modus ponens. (Contributed by NM, 24-Feb-2005.)
 |-  ph   &    |-  ( ( ( ph  /\ 
 ps  /\  ch )  /\  th )  ->  ta )   =>    |-  (
 ( ( ps  /\  ch )  /\  th )  ->  ta )
 
Theoremmp3anl2 1366 An inference based on modus ponens. (Contributed by NM, 24-Feb-2005.)
 |- 
 ps   &    |-  ( ( ( ph  /\ 
 ps  /\  ch )  /\  th )  ->  ta )   =>    |-  (
 ( ( ph  /\  ch )  /\  th )  ->  ta )
 
Theoremmp3anl3 1367 An inference based on modus ponens. (Contributed by NM, 24-Feb-2005.)
 |- 
 ch   &    |-  ( ( ( ph  /\ 
 ps  /\  ch )  /\  th )  ->  ta )   =>    |-  (
 ( ( ph  /\  ps )  /\  th )  ->  ta )
 
Theoremmp3anr1 1368 An inference based on modus ponens. (Contributed by NM, 4-Nov-2006.)
 |- 
 ps   &    |-  ( ( ph  /\  ( ps  /\  ch  /\  th ) )  ->  ta )   =>    |-  (
 ( ph  /\  ( ch 
 /\  th ) )  ->  ta )
 
Theoremmp3anr2 1369 An inference based on modus ponens. (Contributed by NM, 24-Nov-2006.)
 |- 
 ch   &    |-  ( ( ph  /\  ( ps  /\  ch  /\  th ) )  ->  ta )   =>    |-  (
 ( ph  /\  ( ps 
 /\  th ) )  ->  ta )
 
Theoremmp3anr3 1370 An inference based on modus ponens. (Contributed by NM, 19-Oct-2007.)
 |- 
 th   &    |-  ( ( ph  /\  ( ps  /\  ch  /\  th ) )  ->  ta )   =>    |-  (
 ( ph  /\  ( ps 
 /\  ch ) )  ->  ta )
 
Theoremmp3an 1371 An inference based on modus ponens. (Contributed by NM, 14-May-1999.)
 |-  ph   &    |- 
 ps   &    |- 
 ch   &    |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  th
 
Theoremmpd3an3 1372 An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.)
 |-  ( ( ph  /\  ps )  ->  ch )   &    |-  ( ( ph  /\ 
 ps  /\  ch )  ->  th )   =>    |-  ( ( ph  /\  ps )  ->  th )
 
Theoremmpd3an23 1373 An inference based on modus ponens. (Contributed by NM, 4-Dec-2006.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ( ph  /\ 
 ps  /\  ch )  ->  th )   =>    |-  ( ph  ->  th )
 
Theoremmp3and 1374 A deduction based on modus ponens. (Contributed by Mario Carneiro, 24-Dec-2016.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ( ( ps  /\  ch  /\ 
 th )  ->  ta )
 )   =>    |-  ( ph  ->  ta )
 
Theoremmp3an12i 1375 mp3an 1371 with antecedents in standard conjunction form and with one hypothesis an implication. (Contributed by Alan Sare, 28-Aug-2016.)
 |-  ph   &    |- 
 ps   &    |-  ( ch  ->  th )   &    |-  (
 ( ph  /\  ps  /\  th )  ->  ta )   =>    |-  ( ch  ->  ta )
 
Theoremmp3an2i 1376 mp3an 1371 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.)
 |-  ph   &    |-  ( ps  ->  ch )   &    |-  ( ps  ->  th )   &    |-  ( ( ph  /\ 
 ch  /\  th )  ->  ta )   =>    |-  ( ps  ->  ta )
 
Theoremmp3an3an 1377 mp3an 1371 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.)
 |-  ph   &    |-  ( ps  ->  ch )   &    |-  ( th  ->  ta )   &    |-  ( ( ph  /\ 
 ch  /\  ta )  ->  et )   =>    |-  ( ( ps  /\  th )  ->  et )
 
Theoremmp3an2ani 1378 An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.)
 |-  ph   &    |-  ( ps  ->  ch )   &    |-  (
 ( ps  /\  th )  ->  ta )   &    |-  ( ( ph  /\ 
 ch  /\  ta )  ->  et )   =>    |-  ( ( ps  /\  th )  ->  et )
 
Theorembiimp3a 1379 Infer implication from a logical equivalence. Similar to biimpa 296. (Contributed by NM, 4-Sep-2005.)
 |-  ( ( ph  /\  ps )  ->  ( ch  <->  th ) )   =>    |-  ( ( ph  /\ 
 ps  /\  ch )  ->  th )
 
Theorembiimp3ar 1380 Infer implication from a logical equivalence. Similar to biimpar 297. (Contributed by NM, 2-Jan-2009.)
 |-  ( ( ph  /\  ps )  ->  ( ch  <->  th ) )   =>    |-  ( ( ph  /\ 
 ps  /\  th )  ->  ch )
 
Theorem3anandis 1381 Inference that undistributes a triple conjunction in the antecedent. (Contributed by NM, 18-Apr-2007.)
 |-  ( ( ( ph  /\ 
 ps )  /\  ( ph  /\  ch )  /\  ( ph  /\  th )
 )  ->  ta )   =>    |-  (
 ( ph  /\  ( ps 
 /\  ch  /\  th )
 )  ->  ta )
 
Theorem3anandirs 1382 Inference that undistributes a triple conjunction in the antecedent. (Contributed by NM, 25-Jul-2006.) (Revised by NM, 18-Apr-2007.)
 |-  ( ( ( ph  /\ 
 th )  /\  ( ps  /\  th )  /\  ( ch  /\  th )
 )  ->  ta )   =>    |-  (
 ( ( ph  /\  ps  /\ 
 ch )  /\  th )  ->  ta )
 
Theoremecased 1383 Deduction form of disjunctive syllogism. (Contributed by Jim Kingdon, 9-Dec-2017.)
 |-  ( ph  ->  -.  ch )   &    |-  ( ph  ->  ( ps  \/  ch ) )   =>    |-  ( ph  ->  ps )
 
Theoremecase23d 1384 Variation of ecased 1383 with three disjuncts instead of two. (Contributed by NM, 22-Apr-1994.) (Revised by Jim Kingdon, 9-Dec-2017.)
 |-  ( ph  ->  -.  ch )   &    |-  ( ph  ->  -.  th )   &    |-  ( ph  ->  ( ps  \/  ch  \/  th ) )   =>    |-  ( ph  ->  ps )
 
Theoremecase2d 1385 Deduction for elimination by cases. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Sep-2024.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  -.  ( ps  /\ 
 ch ) )   &    |-  ( ph  ->  -.  ( ps  /\ 
 th ) )   &    |-  ( ph  ->  ( ta  \/  ( ch  \/  th )
 ) )   =>    |-  ( ph  ->  ta )
 
Theorem3bior1fd 1386 A disjunction is equivalent to a threefold disjunction with single falsehood, analogous to biorf 749. (Contributed by Alexander van der Vekens, 8-Sep-2017.)
 |-  ( ph  ->  -.  th )   =>    |-  ( ph  ->  (
 ( ch  \/  ps ) 
 <->  ( th  \/  ch  \/  ps ) ) )
 
Theorem3bior1fand 1387 A disjunction is equivalent to a threefold disjunction with single falsehood of a conjunction. (Contributed by Alexander van der Vekens, 8-Sep-2017.)
 |-  ( ph  ->  -.  th )   =>    |-  ( ph  ->  (
 ( ch  \/  ps ) 
 <->  ( ( th  /\  ta )  \/  ch  \/  ps ) ) )
 
Theorem3bior2fd 1388 A wff is equivalent to its threefold disjunction with double falsehood, analogous to biorf 749. (Contributed by Alexander van der Vekens, 8-Sep-2017.)
 |-  ( ph  ->  -.  th )   &    |-  ( ph  ->  -.  ch )   =>    |-  ( ph  ->  ( ps 
 <->  ( th  \/  ch  \/  ps ) ) )
 
Theorem3biant1d 1389 A conjunction is equivalent to a threefold conjunction with single truth, analogous to biantrud 304. (Contributed by Alexander van der Vekens, 26-Sep-2017.)
 |-  ( ph  ->  th )   =>    |-  ( ph  ->  ( ( ch 
 /\  ps )  <->  ( th  /\  ch 
 /\  ps ) ) )
 
Theoremintn3an1d 1390 Introduction of a triple conjunct inside a contradiction. (Contributed by FL, 27-Dec-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ph  ->  -.  ps )   =>    |-  ( ph  ->  -.  ( ps  /\  ch  /\  th ) )
 
Theoremintn3an2d 1391 Introduction of a triple conjunct inside a contradiction. (Contributed by FL, 27-Dec-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ph  ->  -.  ps )   =>    |-  ( ph  ->  -.  ( ch  /\  ps  /\  th ) )
 
Theoremintn3an3d 1392 Introduction of a triple conjunct inside a contradiction. (Contributed by FL, 27-Dec-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ph  ->  -.  ps )   =>    |-  ( ph  ->  -.  ( ch  /\  th  /\  ps ) )
 
1.2.13  True and false constants
 
1.2.13.1  Universal quantifier for use by df-tru

Even though it is not ordinarily part of propositional calculus, the universal quantifier  A. is introduced here so that the soundness of Definition df-tru 1398 can be checked by the same algorithm that is used for predicate calculus. Its first real use is in Axiom ax-5 1493 in the predicate calculus section below. For those who want propositional calculus to be self-contained, i.e., to use wff variables only, the alternate Definition dftru2 1403 may be adopted and this subsection moved down to the start of the subsection with wex 1538 below. However, the use of dftru2 1403 as a definition requires a more elaborate definition checking algorithm that we prefer to avoid.

 
Syntaxwal 1393 Extend wff definition to include the universal quantifier ("for all").  A. x ph is read " ph (phi) is true for all  x". Typically, in its final application 
ph would be replaced with a wff containing a (free) occurrence of the variable  x, for example  x  =  y. In a universe with a finite number of objects, "for all" is equivalent to a big conjunction (AND) with one wff for each possible case of  x. When the universe is infinite (as with set theory), such a propositional-calculus equivalent is not possible because an infinitely long formula has no meaning, but conceptually the idea is the same.
 wff  A. x ph
 
1.2.13.2  Equality predicate for use by df-tru

Even though it is not ordinarily part of propositional calculus, the equality predicate  = is introduced here so that the soundness of definition df-tru 1398 can be checked by the same algorithm as is used for predicate calculus. Its first real use is in Axiom ax-8 1550 in the predicate calculus section below. For those who want propositional calculus to be self-contained, i.e., to use wff variables only, the alternate definition dftru2 1403 may be adopted and this subsection moved down to just above weq 1549 below. However, the use of dftru2 1403 as a definition requires a more elaborate definition checking algorithm that we prefer to avoid.

 
Syntaxcv 1394 This syntax construction states that a variable  x, which has been declared to be a setvar variable by $f statement vx, is also a class expression. This can be justified informally as follows. We know that the class builder  { y  |  y  e.  x } is a class by cab 2215. Since (when  y is distinct from  x) we have  x  =  { y  |  y  e.  x } by cvjust 2224, we can argue that the syntax " class  x " can be viewed as an abbreviation for "
class  { y  |  y  e.  x }". See the discussion under the definition of class in [Jech] p. 4 showing that "Every set can be considered to be a class."

While it is tempting and perhaps occasionally useful to view cv 1394 as a "type conversion" from a setvar variable to a class variable, keep in mind that cv 1394 is intrinsically no different from any other class-building syntax such as cab 2215, cun 3195, or c0 3491.

For a general discussion of the theory of classes and the role of cv 1394, see https://us.metamath.org/mpeuni/mmset.html#class 1394.

(The description above applies to set theory, not predicate calculus. The purpose of introducing  class  x here, and not in set theory where it belongs, is to allow us to express i.e. "prove" the weq 1549 of predicate calculus from the wceq 1395 of set theory, so that we don't overload the  = connective with two syntax definitions. This is done to prevent ambiguity that would complicate some Metamath parsers.)

 class  x
 
Syntaxwceq 1395 Extend wff definition to include class equality.

For a general discussion of the theory of classes, see https://us.metamath.org/mpeuni/mmset.html#class.

(The purpose of introducing 
wff  A  =  B here, and not in set theory where it belongs, is to allow us to express i.e. "prove" the weq 1549 of predicate calculus in terms of the wceq 1395 of set theory, so that we don't "overload" the  = connective with two syntax definitions. This is done to prevent ambiguity that would complicate some Metamath parsers. For example, some parsers - although not the Metamath program - stumble on the fact that the  = in  x  =  y could be the  = of either weq 1549 or wceq 1395, although mathematically it makes no difference. The class variables  A and  B are introduced temporarily for the purpose of this definition but otherwise not used in predicate calculus. See df-cleq 2222 for more information on the set theory usage of wceq 1395.)

 wff  A  =  B
 
1.2.13.3  Define the true and false constants
 
Syntaxwtru 1396 T. is a wff.
 wff T.
 
Theoremtrujust 1397 Soundness justification theorem for df-tru 1398. (Contributed by Mario Carneiro, 17-Nov-2013.) (Revised by NM, 11-Jul-2019.)
 |-  ( ( A. x  x  =  x  ->  A. x  x  =  x )  <->  ( A. y  y  =  y  ->  A. y  y  =  y ) )
 
Definitiondf-tru 1398 Definition of the truth value "true", or "verum", denoted by T.. This is a tautology, as proved by tru 1399. In this definition, an instance of id 19 is used as the definiens, although any tautology, such as an axiom, can be used in its place. This particular id 19 instance was chosen so this definition can be checked by the same algorithm that is used for predicate calculus. This definition should be referenced directly only by tru 1399, and other proofs should depend on tru 1399 (directly or indirectly) instead of this definition, since there are many alternate ways to define T.. (Contributed by Anthony Hart, 13-Oct-2010.) (Revised by NM, 11-Jul-2019.) (New usage is discouraged.)
 |-  ( T.  <->  ( A. x  x  =  x  ->  A. x  x  =  x ) )
 
Theoremtru 1399 The truth value T. is provable. (Contributed by Anthony Hart, 13-Oct-2010.)
 |- T.
 
Syntaxwfal 1400 F. is a wff.
 wff F.
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16411
  Copyright terms: Public domain < Previous  Next >