Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-axemptylem Unicode version

Theorem bj-axemptylem 13427
Description: Lemma for bj-axempty 13428 and bj-axempty2 13429. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4090 instead. (New usage is discouraged.)
Assertion
Ref Expression
bj-axemptylem  |-  E. x A. y ( y  e.  x  -> F.  )
Distinct variable group:    x, y

Proof of Theorem bj-axemptylem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bdfal 13368 . . 3  |- BOUNDED F.
21bdsep1 13420 . 2  |-  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\ F.  )
)
3 biimp 117 . . . 4  |-  ( ( y  e.  x  <->  ( y  e.  z  /\ F.  )
)  ->  ( y  e.  x  ->  ( y  e.  z  /\ F.  ) ) )
4 falimd 1350 . . . 4  |-  ( ( y  e.  z  /\ F.  )  -> F.  )
53, 4syl6 33 . . 3  |-  ( ( y  e.  x  <->  ( y  e.  z  /\ F.  )
)  ->  ( y  e.  x  -> F.  )
)
65alimi 1435 . 2  |-  ( A. y ( y  e.  x  <->  ( y  e.  z  /\ F.  )
)  ->  A. y
( y  e.  x  -> F.  ) )
72, 6eximii 1582 1  |-  E. x A. y ( y  e.  x  -> F.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1333   F. wfal 1340   E.wex 1472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1427  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-4 1490  ax-ial 1514  ax-bd0 13348  ax-bdim 13349  ax-bdn 13352  ax-bdeq 13355  ax-bdsep 13419
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-fal 1341
This theorem is referenced by:  bj-axempty  13428  bj-axempty2  13429
  Copyright terms: Public domain W3C validator