Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-axemptylem Unicode version

Theorem bj-axemptylem 16255
Description: Lemma for bj-axempty 16256 and bj-axempty2 16257. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4210 instead. (New usage is discouraged.)
Assertion
Ref Expression
bj-axemptylem  |-  E. x A. y ( y  e.  x  -> F.  )
Distinct variable group:    x, y

Proof of Theorem bj-axemptylem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bdfal 16196 . . 3  |- BOUNDED F.
21bdsep1 16248 . 2  |-  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\ F.  )
)
3 biimp 118 . . . 4  |-  ( ( y  e.  x  <->  ( y  e.  z  /\ F.  )
)  ->  ( y  e.  x  ->  ( y  e.  z  /\ F.  ) ) )
4 falimd 1410 . . . 4  |-  ( ( y  e.  z  /\ F.  )  -> F.  )
53, 4syl6 33 . . 3  |-  ( ( y  e.  x  <->  ( y  e.  z  /\ F.  )
)  ->  ( y  e.  x  -> F.  )
)
65alimi 1501 . 2  |-  ( A. y ( y  e.  x  <->  ( y  e.  z  /\ F.  )
)  ->  A. y
( y  e.  x  -> F.  ) )
72, 6eximii 1648 1  |-  E. x A. y ( y  e.  x  -> F.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1393   F. wfal 1400   E.wex 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-ial 1580  ax-bd0 16176  ax-bdim 16177  ax-bdn 16180  ax-bdeq 16183  ax-bdsep 16247
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401
This theorem is referenced by:  bj-axempty  16256  bj-axempty2  16257
  Copyright terms: Public domain W3C validator