Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-axemptylem Unicode version

Theorem bj-axemptylem 14915
Description: Lemma for bj-axempty 14916 and bj-axempty2 14917. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4141 instead. (New usage is discouraged.)
Assertion
Ref Expression
bj-axemptylem  |-  E. x A. y ( y  e.  x  -> F.  )
Distinct variable group:    x, y

Proof of Theorem bj-axemptylem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bdfal 14856 . . 3  |- BOUNDED F.
21bdsep1 14908 . 2  |-  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\ F.  )
)
3 biimp 118 . . . 4  |-  ( ( y  e.  x  <->  ( y  e.  z  /\ F.  )
)  ->  ( y  e.  x  ->  ( y  e.  z  /\ F.  ) ) )
4 falimd 1378 . . . 4  |-  ( ( y  e.  z  /\ F.  )  -> F.  )
53, 4syl6 33 . . 3  |-  ( ( y  e.  x  <->  ( y  e.  z  /\ F.  )
)  ->  ( y  e.  x  -> F.  )
)
65alimi 1465 . 2  |-  ( A. y ( y  e.  x  <->  ( y  e.  z  /\ F.  )
)  ->  A. y
( y  e.  x  -> F.  ) )
72, 6eximii 1612 1  |-  E. x A. y ( y  e.  x  -> F.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1361   F. wfal 1368   E.wex 1502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1457  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-4 1520  ax-ial 1544  ax-bd0 14836  ax-bdim 14837  ax-bdn 14840  ax-bdeq 14843  ax-bdsep 14907
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-fal 1369
This theorem is referenced by:  bj-axempty  14916  bj-axempty2  14917
  Copyright terms: Public domain W3C validator