Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > impd | Unicode version |
Description: Importation deduction. (Contributed by NM, 31-Mar-1994.) |
Ref | Expression |
---|---|
imp3.1 |
Ref | Expression |
---|---|
impd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp3.1 | . . . 4 | |
2 | 1 | com3l 81 | . . 3 |
3 | 2 | imp 123 | . 2 |
4 | 3 | com12 30 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem is referenced by: impcomd 253 imp32 255 pm3.31 260 syland 291 imp4c 349 imp4d 350 imp5d 357 expimpd 361 expl 376 pm3.37 679 pm5.6r 913 3expib 1185 sbiedh 1764 equs5 1806 moexexdc 2087 rsp2 2504 moi 2891 reu6 2897 sbciegft 2963 prel12 3730 opthpr 3731 invdisj 3955 sowlin 4275 reusv1 4412 relop 4729 elres 4895 iss 4905 funssres 5205 fv3 5484 funfvima 5689 poxp 6169 tfri3 6304 nndi 6422 nnmass 6423 nnmordi 6452 nnmord 6453 eroveu 6560 fiintim 6862 suplubti 6932 addnq0mo 7346 mulnq0mo 7347 prcdnql 7383 prcunqu 7384 prnmaxl 7387 prnminu 7388 genprndl 7420 genprndu 7421 distrlem1prl 7481 distrlem1pru 7482 distrlem5prl 7485 distrlem5pru 7486 recexprlemss1l 7534 recexprlemss1u 7535 addsrmo 7642 mulsrmo 7643 mulgt0sr 7677 ltleletr 7938 mulgt1 8713 fzind 9258 eqreznegel 9501 fzen 9923 elfzodifsumelfzo 10078 bernneq 10516 mulcn2 11186 prodmodclem2 11451 divalglemeunn 11785 divalglemeuneg 11787 ndvdssub 11794 algcvgblem 11898 coprmdvds 11941 coprmdvds2 11942 divgcdcoprm0 11950 lmss 12593 lmtopcnp 12597 bj-sbimedh 13291 bj-nnen2lp 13475 |
Copyright terms: Public domain | W3C validator |