ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon4aidc Unicode version

Theorem necon4aidc 2408
Description: Contrapositive inference for inequality. (Contributed by Jim Kingdon, 16-May-2018.)
Hypothesis
Ref Expression
necon4aidc.1  |-  (DECID  A  =  B  ->  ( A  =/=  B  ->  -.  ph )
)
Assertion
Ref Expression
necon4aidc  |-  (DECID  A  =  B  ->  ( ph  ->  A  =  B ) )

Proof of Theorem necon4aidc
StepHypRef Expression
1 df-ne 2341 . . 3  |-  ( A  =/=  B  <->  -.  A  =  B )
2 necon4aidc.1 . . 3  |-  (DECID  A  =  B  ->  ( A  =/=  B  ->  -.  ph )
)
31, 2syl5bir 152 . 2  |-  (DECID  A  =  B  ->  ( -.  A  =  B  ->  -. 
ph ) )
4 condc 848 . 2  |-  (DECID  A  =  B  ->  ( ( -.  A  =  B  ->  -.  ph )  -> 
( ph  ->  A  =  B ) ) )
53, 4mpd 13 1  |-  (DECID  A  =  B  ->  ( ph  ->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4  DECID wdc 829    = wceq 1348    =/= wne 2340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-ne 2341
This theorem is referenced by:  necon4idc  2409
  Copyright terms: Public domain W3C validator