| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > biimtrrid | Unicode version | ||
| Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| biimtrrid.1 | 
 | 
| biimtrrid.2 | 
 | 
| Ref | Expression | 
|---|---|
| biimtrrid | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | biimtrrid.1 | 
. . 3
 | |
| 2 | 1 | biimpri 133 | 
. 2
 | 
| 3 | biimtrrid.2 | 
. 2
 | |
| 4 | 2, 3 | syl5 32 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: 3imtr3g 204 19.37-1 1688 mo3h 2098 necon1bidc 2419 necon4aidc 2435 r19.30dc 2644 ceqex 2891 ssdisj 3507 ralidm 3551 exmid1dc 4233 rexxfrd 4498 sucprcreg 4585 imain 5340 f0rn0 5452 funopfv 5600 mpteqb 5652 funfvima 5794 fliftfun 5843 iinerm 6666 eroveu 6685 th3qlem1 6696 updjudhf 7145 elni2 7381 genpdisj 7590 lttri3 8106 seqf1og 10613 nn0ltexp2 10801 zfz1iso 10933 cau3lem 11279 maxleast 11378 rexanre 11385 climcau 11512 summodc 11548 mertenslem2 11701 prodmodclem2 11742 prodmodc 11743 fprodseq 11748 bitsfzolem 12118 bitsfzo 12119 divgcdcoprmex 12270 prmind2 12288 pcqmul 12472 pcxcl 12480 pcadd 12509 mul4sq 12563 issubg2m 13319 dvdsrtr 13657 unitgrp 13672 subrgintm 13799 islssm 13913 znidom 14213 opnneiid 14400 txuni2 14492 txbas 14494 txbasval 14503 txlm 14515 blin2 14668 tgqioo 14791 plyadd 14987 plymul 14988 lgsquad2lem2 15323 2sqlem5 15360 bj-charfunr 15456 | 
| Copyright terms: Public domain | W3C validator |