| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimtrrid | Unicode version | ||
| Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| biimtrrid.1 |
|
| biimtrrid.2 |
|
| Ref | Expression |
|---|---|
| biimtrrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimtrrid.1 |
. . 3
| |
| 2 | 1 | biimpri 133 |
. 2
|
| 3 | biimtrrid.2 |
. 2
| |
| 4 | 2, 3 | syl5 32 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr3g 204 19.37-1 1688 mo3h 2098 necon1bidc 2419 necon4aidc 2435 r19.30dc 2644 ceqex 2891 ssdisj 3508 ralidm 3552 exmid1dc 4234 rexxfrd 4499 sucprcreg 4586 imain 5341 f0rn0 5455 funopfv 5603 mpteqb 5655 funfvima 5797 fliftfun 5846 iinerm 6675 eroveu 6694 th3qlem1 6705 updjudhf 7154 elni2 7398 genpdisj 7607 lttri3 8123 seqf1og 10630 nn0ltexp2 10818 zfz1iso 10950 cau3lem 11296 maxleast 11395 rexanre 11402 climcau 11529 summodc 11565 mertenslem2 11718 prodmodclem2 11759 prodmodc 11760 fprodseq 11765 bitsfzolem 12136 bitsfzo 12137 divgcdcoprmex 12295 prmind2 12313 pcqmul 12497 pcxcl 12505 pcadd 12534 mul4sq 12588 issubg2m 13395 dvdsrtr 13733 unitgrp 13748 subrgintm 13875 islssm 13989 znidom 14289 opnneiid 14484 txuni2 14576 txbas 14578 txbasval 14587 txlm 14599 blin2 14752 tgqioo 14875 plyadd 15071 plymul 15072 lgsquad2lem2 15407 2sqlem5 15444 bj-charfunr 15540 |
| Copyright terms: Public domain | W3C validator |