| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimtrrid | Unicode version | ||
| Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| biimtrrid.1 |
|
| biimtrrid.2 |
|
| Ref | Expression |
|---|---|
| biimtrrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimtrrid.1 |
. . 3
| |
| 2 | 1 | biimpri 133 |
. 2
|
| 3 | biimtrrid.2 |
. 2
| |
| 4 | 2, 3 | syl5 32 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr3g 204 19.37-1 1697 mo3h 2107 necon1bidc 2428 necon4aidc 2444 r19.30dc 2653 ceqex 2900 ssdisj 3517 ralidm 3561 exmid1dc 4245 rexxfrd 4511 sucprcreg 4598 imain 5357 f0rn0 5472 funopfv 5620 mpteqb 5672 funfvima 5818 fliftfun 5867 iinerm 6696 eroveu 6715 th3qlem1 6726 updjudhf 7183 elni2 7429 genpdisj 7638 lttri3 8154 seqf1og 10668 nn0ltexp2 10856 zfz1iso 10988 cau3lem 11458 maxleast 11557 rexanre 11564 climcau 11691 summodc 11727 mertenslem2 11880 prodmodclem2 11921 prodmodc 11922 fprodseq 11927 bitsfzolem 12298 bitsfzo 12299 divgcdcoprmex 12457 prmind2 12475 pcqmul 12659 pcxcl 12667 pcadd 12696 mul4sq 12750 issubg2m 13558 dvdsrtr 13896 unitgrp 13911 subrgintm 14038 islssm 14152 znidom 14452 opnneiid 14669 txuni2 14761 txbas 14763 txbasval 14772 txlm 14784 blin2 14937 tgqioo 15060 plyadd 15256 plymul 15257 lgsquad2lem2 15592 2sqlem5 15629 bj-charfunr 15783 |
| Copyright terms: Public domain | W3C validator |