![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimtrrid | Unicode version |
Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
biimtrrid.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
biimtrrid.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
biimtrrid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimtrrid.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpri 133 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | biimtrrid.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | syl5 32 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3imtr3g 204 19.37-1 1674 mo3h 2079 necon1bidc 2399 necon4aidc 2415 r19.30dc 2624 ceqex 2866 ssdisj 3481 ralidm 3525 exmid1dc 4202 rexxfrd 4465 sucprcreg 4550 imain 5300 f0rn0 5412 funopfv 5557 mpteqb 5608 funfvima 5750 fliftfun 5799 iinerm 6609 eroveu 6628 th3qlem1 6639 updjudhf 7080 elni2 7315 genpdisj 7524 lttri3 8039 nn0ltexp2 10691 zfz1iso 10823 cau3lem 11125 maxleast 11224 rexanre 11231 climcau 11357 summodc 11393 mertenslem2 11546 prodmodclem2 11587 prodmodc 11588 fprodseq 11593 divgcdcoprmex 12104 prmind2 12122 pcqmul 12305 pcxcl 12313 pcadd 12341 mul4sq 12394 issubg2m 13054 dvdsrtr 13275 unitgrp 13290 subrgintm 13369 opnneiid 13703 txuni2 13795 txbas 13797 txbasval 13806 txlm 13818 blin2 13971 tgqioo 14086 2sqlem5 14505 bj-charfunr 14601 |
Copyright terms: Public domain | W3C validator |