![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimtrrid | Unicode version |
Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
biimtrrid.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
biimtrrid.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
biimtrrid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimtrrid.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpri 133 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | biimtrrid.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | syl5 32 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3imtr3g 204 19.37-1 1685 mo3h 2095 necon1bidc 2416 necon4aidc 2432 r19.30dc 2641 ceqex 2888 ssdisj 3504 ralidm 3548 exmid1dc 4230 rexxfrd 4495 sucprcreg 4582 imain 5337 f0rn0 5449 funopfv 5597 mpteqb 5649 funfvima 5791 fliftfun 5840 iinerm 6663 eroveu 6682 th3qlem1 6693 updjudhf 7140 elni2 7376 genpdisj 7585 lttri3 8101 seqf1og 10595 nn0ltexp2 10783 zfz1iso 10915 cau3lem 11261 maxleast 11360 rexanre 11367 climcau 11493 summodc 11529 mertenslem2 11682 prodmodclem2 11723 prodmodc 11724 fprodseq 11729 divgcdcoprmex 12243 prmind2 12261 pcqmul 12444 pcxcl 12452 pcadd 12481 mul4sq 12535 issubg2m 13262 dvdsrtr 13600 unitgrp 13615 subrgintm 13742 islssm 13856 znidom 14156 opnneiid 14343 txuni2 14435 txbas 14437 txbasval 14446 txlm 14458 blin2 14611 tgqioo 14734 plyadd 14930 plymul 14931 lgsquad2lem2 15239 2sqlem5 15276 bj-charfunr 15372 |
Copyright terms: Public domain | W3C validator |