| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimtrrid | Unicode version | ||
| Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| biimtrrid.1 |
|
| biimtrrid.2 |
|
| Ref | Expression |
|---|---|
| biimtrrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimtrrid.1 |
. . 3
| |
| 2 | 1 | biimpri 133 |
. 2
|
| 3 | biimtrrid.2 |
. 2
| |
| 4 | 2, 3 | syl5 32 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr3g 204 19.37-1 1698 mo3h 2109 necon1bidc 2430 necon4aidc 2446 r19.30dc 2655 ceqex 2907 ssdisj 3525 ralidm 3569 exmid1dc 4260 rexxfrd 4528 sucprcreg 4615 imain 5375 f0rn0 5492 funopfv 5641 mpteqb 5693 funfvima 5839 fliftfun 5888 iinerm 6717 eroveu 6736 th3qlem1 6747 updjudhf 7207 elni2 7462 genpdisj 7671 lttri3 8187 seqf1og 10703 nn0ltexp2 10891 zfz1iso 11023 cau3lem 11540 maxleast 11639 rexanre 11646 climcau 11773 summodc 11809 mertenslem2 11962 prodmodclem2 12003 prodmodc 12004 fprodseq 12009 bitsfzolem 12380 bitsfzo 12381 divgcdcoprmex 12539 prmind2 12557 pcqmul 12741 pcxcl 12749 pcadd 12778 mul4sq 12832 issubg2m 13640 dvdsrtr 13978 unitgrp 13993 subrgintm 14120 islssm 14234 znidom 14534 opnneiid 14751 txuni2 14843 txbas 14845 txbasval 14854 txlm 14866 blin2 15019 tgqioo 15142 plyadd 15338 plymul 15339 lgsquad2lem2 15674 2sqlem5 15711 bj-charfunr 15945 |
| Copyright terms: Public domain | W3C validator |