| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimtrrid | Unicode version | ||
| Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| biimtrrid.1 |
|
| biimtrrid.2 |
|
| Ref | Expression |
|---|---|
| biimtrrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimtrrid.1 |
. . 3
| |
| 2 | 1 | biimpri 133 |
. 2
|
| 3 | biimtrrid.2 |
. 2
| |
| 4 | 2, 3 | syl5 32 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr3g 204 19.37-1 1697 mo3h 2107 necon1bidc 2428 necon4aidc 2444 r19.30dc 2653 ceqex 2900 ssdisj 3517 ralidm 3561 exmid1dc 4244 rexxfrd 4510 sucprcreg 4597 imain 5356 f0rn0 5470 funopfv 5618 mpteqb 5670 funfvima 5816 fliftfun 5865 iinerm 6694 eroveu 6713 th3qlem1 6724 updjudhf 7181 elni2 7427 genpdisj 7636 lttri3 8152 seqf1og 10666 nn0ltexp2 10854 zfz1iso 10986 cau3lem 11425 maxleast 11524 rexanre 11531 climcau 11658 summodc 11694 mertenslem2 11847 prodmodclem2 11888 prodmodc 11889 fprodseq 11894 bitsfzolem 12265 bitsfzo 12266 divgcdcoprmex 12424 prmind2 12442 pcqmul 12626 pcxcl 12634 pcadd 12663 mul4sq 12717 issubg2m 13525 dvdsrtr 13863 unitgrp 13878 subrgintm 14005 islssm 14119 znidom 14419 opnneiid 14636 txuni2 14728 txbas 14730 txbasval 14739 txlm 14751 blin2 14904 tgqioo 15027 plyadd 15223 plymul 15224 lgsquad2lem2 15559 2sqlem5 15596 bj-charfunr 15746 |
| Copyright terms: Public domain | W3C validator |