| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimtrrid | Unicode version | ||
| Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| biimtrrid.1 |
|
| biimtrrid.2 |
|
| Ref | Expression |
|---|---|
| biimtrrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimtrrid.1 |
. . 3
| |
| 2 | 1 | biimpri 133 |
. 2
|
| 3 | biimtrrid.2 |
. 2
| |
| 4 | 2, 3 | syl5 32 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr3g 204 19.37-1 1720 mo3h 2131 necon1bidc 2452 necon4aidc 2468 r19.30dc 2678 ceqex 2930 ssdisj 3548 ralidm 3592 exmid1dc 4284 rexxfrd 4554 sucprcreg 4641 imain 5403 f0rn0 5520 funopfv 5671 mpteqb 5725 funfvima 5871 fliftfun 5920 iinerm 6754 eroveu 6773 th3qlem1 6784 updjudhf 7246 elni2 7501 genpdisj 7710 lttri3 8226 seqf1og 10743 nn0ltexp2 10931 zfz1iso 11063 cau3lem 11625 maxleast 11724 rexanre 11731 climcau 11858 summodc 11894 mertenslem2 12047 prodmodclem2 12088 prodmodc 12089 fprodseq 12094 bitsfzolem 12465 bitsfzo 12466 divgcdcoprmex 12624 prmind2 12642 pcqmul 12826 pcxcl 12834 pcadd 12863 mul4sq 12917 issubg2m 13726 dvdsrtr 14065 unitgrp 14080 subrgintm 14207 islssm 14321 znidom 14621 opnneiid 14838 txuni2 14930 txbas 14932 txbasval 14941 txlm 14953 blin2 15106 tgqioo 15229 plyadd 15425 plymul 15426 lgsquad2lem2 15761 2sqlem5 15798 uhgr2edg 16004 uspgr2wlkeq 16076 bj-charfunr 16173 |
| Copyright terms: Public domain | W3C validator |