ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon4bddc Unicode version

Theorem necon4bddc 2407
Description: Contrapositive inference for inequality. (Contributed by Jim Kingdon, 17-May-2018.)
Hypothesis
Ref Expression
necon4bddc.1  |-  ( ph  ->  (DECID  ps  ->  ( -.  ps  ->  A  =/=  B
) ) )
Assertion
Ref Expression
necon4bddc  |-  ( ph  ->  (DECID  ps  ->  ( A  =  B  ->  ps )
) )

Proof of Theorem necon4bddc
StepHypRef Expression
1 necon4bddc.1 . . 3  |-  ( ph  ->  (DECID  ps  ->  ( -.  ps  ->  A  =/=  B
) ) )
2 df-ne 2337 . . 3  |-  ( A  =/=  B  <->  -.  A  =  B )
31, 2syl8ib 165 . 2  |-  ( ph  ->  (DECID  ps  ->  ( -.  ps  ->  -.  A  =  B ) ) )
4 condc 843 . 2  |-  (DECID  ps  ->  ( ( -.  ps  ->  -.  A  =  B )  ->  ( A  =  B  ->  ps )
) )
53, 4sylcom 28 1  |-  ( ph  ->  (DECID  ps  ->  ( A  =  B  ->  ps )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4  DECID wdc 824    = wceq 1343    =/= wne 2336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-ne 2337
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator