ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylcom Unicode version

Theorem sylcom 28
Description: Syllogism inference with commutation of antecedents. (Contributed by NM, 29-Aug-2004.) (Proof shortened by O'Cat, 2-Feb-2006.) (Proof shortened by Stefan Allan, 23-Feb-2006.)
Hypotheses
Ref Expression
sylcom.1  |-  ( ph  ->  ( ps  ->  ch ) )
sylcom.2  |-  ( ps 
->  ( ch  ->  th )
)
Assertion
Ref Expression
sylcom  |-  ( ph  ->  ( ps  ->  th )
)

Proof of Theorem sylcom
StepHypRef Expression
1 sylcom.1 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
2 sylcom.2 . . 3  |-  ( ps 
->  ( ch  ->  th )
)
32a2i 11 . 2  |-  ( ( ps  ->  ch )  ->  ( ps  ->  th )
)
41, 3syl 14 1  |-  ( ph  ->  ( ps  ->  th )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  syl5com  29  syl6  33  syli  37  mpbidi  151  stdcn  848  con4biddc  858  jaddc  865  con1biddc  877  necon4addc  2434  necon4bddc  2435  necon4ddc  2436  necon1addc  2440  necon1bddc  2441  dmcosseq  4933  iss  4988  funopg  5288  snon0  6994  metrest  14674
  Copyright terms: Public domain W3C validator