Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nexd | Unicode version |
Description: Deduction for generalization rule for negated wff. (Contributed by NM, 2-Jan-2002.) |
Ref | Expression |
---|---|
nexd.1 | |
nexd.2 |
Ref | Expression |
---|---|
nexd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nexd.1 | . . 3 | |
2 | nexd.2 | . . 3 | |
3 | 1, 2 | alrimih 1457 | . 2 |
4 | alnex 1487 | . 2 | |
5 | 3, 4 | sylib 121 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wal 1341 wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1435 ax-gen 1437 ax-ie2 1482 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 |
This theorem is referenced by: nexdv 1924 |
Copyright terms: Public domain | W3C validator |