| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > alnex | Unicode version | ||
| Description: Theorem 19.7 of [Margaris] p. 89. To read this
intuitionistically, think
of it as "if |
| Ref | Expression |
|---|---|
| alnex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fal 1380 |
. . . 4
| |
| 2 | 1 | pm2.21i 647 |
. . 3
|
| 3 | 2 | 19.23h 1521 |
. 2
|
| 4 | dfnot 1391 |
. . 3
| |
| 5 | 4 | albii 1493 |
. 2
|
| 6 | dfnot 1391 |
. 2
| |
| 7 | 3, 5, 6 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1470 ax-gen 1472 ax-ie2 1517 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 |
| This theorem is referenced by: nex 1523 dfexdc 1524 exalim 1525 ax-9 1554 alinexa 1626 nexd 1636 alexdc 1642 19.30dc 1650 19.33b2 1652 alexnim 1671 nnal 1672 ax6blem 1673 nf4dc 1693 nf4r 1694 mo2n 2082 notm0 3481 disjsn 3695 snprc 3698 dm0rn0 4895 reldm0 4896 dmsn0 5150 dmsn0el 5152 iotanul 5247 imadiflem 5353 imadif 5354 ltexprlemdisj 7719 recexprlemdisj 7743 fzo0 10292 |
| Copyright terms: Public domain | W3C validator |