| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > alnex | Unicode version | ||
| Description: Theorem 19.7 of [Margaris] p. 89. To read this
intuitionistically, think
of it as "if |
| Ref | Expression |
|---|---|
| alnex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fal 1402 |
. . . 4
| |
| 2 | 1 | pm2.21i 649 |
. . 3
|
| 3 | 2 | 19.23h 1544 |
. 2
|
| 4 | dfnot 1413 |
. . 3
| |
| 5 | 4 | albii 1516 |
. 2
|
| 6 | dfnot 1413 |
. 2
| |
| 7 | 3, 5, 6 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1493 ax-gen 1495 ax-ie2 1540 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 |
| This theorem is referenced by: nex 1546 dfexdc 1547 exalim 1548 ax-9 1577 alinexa 1649 nexd 1659 alexdc 1665 19.30dc 1673 19.33b2 1675 alexnim 1694 nnal 1695 ax6blem 1696 nf4dc 1716 nf4r 1717 mo2n 2105 notm0 3512 disjsn 3728 snprc 3731 dm0rn0 4940 reldm0 4941 dmsn0 5196 dmsn0el 5198 iotanul 5294 imadiflem 5400 imadif 5401 ltexprlemdisj 7793 recexprlemdisj 7817 fzo0 10366 |
| Copyright terms: Public domain | W3C validator |