| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > alnex | Unicode version | ||
| Description: Theorem 19.7 of [Margaris] p. 89. To read this
intuitionistically, think
of it as "if |
| Ref | Expression |
|---|---|
| alnex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fal 1371 |
. . . 4
| |
| 2 | 1 | pm2.21i 647 |
. . 3
|
| 3 | 2 | 19.23h 1512 |
. 2
|
| 4 | dfnot 1382 |
. . 3
| |
| 5 | 4 | albii 1484 |
. 2
|
| 6 | dfnot 1382 |
. 2
| |
| 7 | 3, 5, 6 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ie2 1508 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 |
| This theorem is referenced by: nex 1514 dfexdc 1515 exalim 1516 ax-9 1545 alinexa 1617 nexd 1627 alexdc 1633 19.30dc 1641 19.33b2 1643 alexnim 1662 nnal 1663 ax6blem 1664 nf4dc 1684 nf4r 1685 mo2n 2073 notm0 3472 disjsn 3685 snprc 3688 dm0rn0 4884 reldm0 4885 dmsn0 5138 dmsn0el 5140 iotanul 5235 imadiflem 5338 imadif 5339 ltexprlemdisj 7690 recexprlemdisj 7714 fzo0 10261 |
| Copyright terms: Public domain | W3C validator |