| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > alnex | Unicode version | ||
| Description: Theorem 19.7 of [Margaris] p. 89. To read this
intuitionistically, think
of it as "if |
| Ref | Expression |
|---|---|
| alnex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fal 1380 |
. . . 4
| |
| 2 | 1 | pm2.21i 647 |
. . 3
|
| 3 | 2 | 19.23h 1522 |
. 2
|
| 4 | dfnot 1391 |
. . 3
| |
| 5 | 4 | albii 1494 |
. 2
|
| 6 | dfnot 1391 |
. 2
| |
| 7 | 3, 5, 6 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1471 ax-gen 1473 ax-ie2 1518 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 |
| This theorem is referenced by: nex 1524 dfexdc 1525 exalim 1526 ax-9 1555 alinexa 1627 nexd 1637 alexdc 1643 19.30dc 1651 19.33b2 1653 alexnim 1672 nnal 1673 ax6blem 1674 nf4dc 1694 nf4r 1695 mo2n 2083 notm0 3489 disjsn 3705 snprc 3708 dm0rn0 4914 reldm0 4915 dmsn0 5169 dmsn0el 5171 iotanul 5266 imadiflem 5372 imadif 5373 ltexprlemdisj 7754 recexprlemdisj 7778 fzo0 10327 |
| Copyright terms: Public domain | W3C validator |