| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nexd | GIF version | ||
| Description: Deduction for generalization rule for negated wff. (Contributed by NM, 2-Jan-2002.) | 
| Ref | Expression | 
|---|---|
| nexd.1 | ⊢ (𝜑 → ∀𝑥𝜑) | 
| nexd.2 | ⊢ (𝜑 → ¬ 𝜓) | 
| Ref | Expression | 
|---|---|
| nexd | ⊢ (𝜑 → ¬ ∃𝑥𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nexd.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | nexd.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 3 | 1, 2 | alrimih 1483 | . 2 ⊢ (𝜑 → ∀𝑥 ¬ 𝜓) | 
| 4 | alnex 1513 | . 2 ⊢ (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓) | |
| 5 | 3, 4 | sylib 122 | 1 ⊢ (𝜑 → ¬ ∃𝑥𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1362 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ie2 1508 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 | 
| This theorem is referenced by: nexdv 1955 | 
| Copyright terms: Public domain | W3C validator |