ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nexd GIF version

Theorem nexd 1635
Description: Deduction for generalization rule for negated wff. (Contributed by NM, 2-Jan-2002.)
Hypotheses
Ref Expression
nexd.1 (𝜑 → ∀𝑥𝜑)
nexd.2 (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
nexd (𝜑 → ¬ ∃𝑥𝜓)

Proof of Theorem nexd
StepHypRef Expression
1 nexd.1 . . 3 (𝜑 → ∀𝑥𝜑)
2 nexd.2 . . 3 (𝜑 → ¬ 𝜓)
31, 2alrimih 1491 . 2 (𝜑 → ∀𝑥 ¬ 𝜓)
4 alnex 1521 . 2 (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓)
53, 4sylib 122 1 (𝜑 → ¬ ∃𝑥𝜓)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1370  wex 1514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1469  ax-gen 1471  ax-ie2 1516
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-fal 1378
This theorem is referenced by:  nexdv  1963
  Copyright terms: Public domain W3C validator