ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ninba Unicode version

Theorem ninba 962
Description: Miscellaneous inference relating falsehoods. (Contributed by NM, 31-Mar-1994.)
Hypothesis
Ref Expression
ninba.1  |-  ph
Assertion
Ref Expression
ninba  |-  ( -. 
ps  ->  ( -.  ph  <->  ( ch  /\  ps )
) )

Proof of Theorem ninba
StepHypRef Expression
1 ninba.1 . . 3  |-  ph
21niabn 957 . 2  |-  ( -. 
ps  ->  ( ( ch 
/\  ps )  <->  -.  ph )
)
32bicomd 140 1  |-  ( -. 
ps  ->  ( -.  ph  <->  ( ch  /\  ps )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator