| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prlem1 | Unicode version | ||
| Description: A specialized lemma for set theory (to derive the Axiom of Pairing). (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 5-Jan-2013.) |
| Ref | Expression |
|---|---|
| prlem1.1 |
|
| prlem1.2 |
|
| Ref | Expression |
|---|---|
| prlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prlem1.1 |
. . . . 5
| |
| 2 | 1 | biimprd 158 |
. . . 4
|
| 3 | 2 | adantld 278 |
. . 3
|
| 4 | prlem1.2 |
. . . . 5
| |
| 5 | 4 | pm2.21d 620 |
. . . 4
|
| 6 | 5 | adantrd 279 |
. . 3
|
| 7 | 3, 6 | jaao 720 |
. 2
|
| 8 | 7 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |