ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.42r Unicode version

Theorem pm4.42r 966
Description: One direction of Theorem *4.42 of [WhiteheadRussell] p. 119. (Contributed by Jim Kingdon, 4-Aug-2018.)
Assertion
Ref Expression
pm4.42r  |-  ( ( ( ph  /\  ps )  \/  ( ph  /\ 
-.  ps ) )  ->  ph )

Proof of Theorem pm4.42r
StepHypRef Expression
1 simpl 108 . 2  |-  ( (
ph  /\  ps )  ->  ph )
2 simpl 108 . 2  |-  ( (
ph  /\  -.  ps )  ->  ph )
31, 2jaoi 711 1  |-  ( ( ( ph  /\  ps )  \/  ( ph  /\ 
-.  ps ) )  ->  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator