ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nsyld Unicode version

Theorem nsyld 638
Description: A negated syllogism deduction. (Contributed by NM, 9-Apr-2005.)
Hypotheses
Ref Expression
nsyld.1  |-  ( ph  ->  ( ps  ->  -.  ch ) )
nsyld.2  |-  ( ph  ->  ( ta  ->  ch ) )
Assertion
Ref Expression
nsyld  |-  ( ph  ->  ( ps  ->  -.  ta ) )

Proof of Theorem nsyld
StepHypRef Expression
1 nsyld.1 . 2  |-  ( ph  ->  ( ps  ->  -.  ch ) )
2 nsyld.2 . . 3  |-  ( ph  ->  ( ta  ->  ch ) )
32con3d 621 . 2  |-  ( ph  ->  ( -.  ch  ->  -. 
ta ) )
41, 3syld 45 1  |-  ( ph  ->  ( ps  ->  -.  ta ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 604  ax-in2 605
This theorem is referenced by:  pm2.65d  650  fzdcel  9975
  Copyright terms: Public domain W3C validator