ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzdcel Unicode version

Theorem fzdcel 10042
Description: Decidability of membership in a finite interval of integers. (Contributed by Jim Kingdon, 1-Jun-2020.)
Assertion
Ref Expression
fzdcel  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  K  e.  ( M ... N ) )

Proof of Theorem fzdcel
StepHypRef Expression
1 fztri3or 10041 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <  M  \/  K  e.  ( M ... N
)  \/  N  < 
K ) )
2 zltnle 9301 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( K  <  M  <->  -.  M  <_  K )
)
323adant3 1017 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <  M  <->  -.  M  <_  K ) )
4 simpl 109 . . . . . . 7  |-  ( ( M  <_  K  /\  K  <_  N )  ->  M  <_  K )
54con3i 632 . . . . . 6  |-  ( -.  M  <_  K  ->  -.  ( M  <_  K  /\  K  <_  N ) )
63, 5biimtrdi 163 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <  M  ->  -.  ( M  <_  K  /\  K  <_  N ) ) )
7 elfz 10016 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <->  ( M  <_  K  /\  K  <_  N ) ) )
87biimpd 144 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  ->  ( M  <_  K  /\  K  <_  N ) ) )
96, 8nsyld 648 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <  M  ->  -.  K  e.  ( M ... N ) ) )
10 olc 711 . . . . 5  |-  ( -.  K  e.  ( M ... N )  -> 
( K  e.  ( M ... N )  \/  -.  K  e.  ( M ... N
) ) )
11 df-dc 835 . . . . 5  |-  (DECID  K  e.  ( M ... N
)  <->  ( K  e.  ( M ... N
)  \/  -.  K  e.  ( M ... N
) ) )
1210, 11sylibr 134 . . . 4  |-  ( -.  K  e.  ( M ... N )  -> DECID  K  e.  ( M ... N
) )
139, 12syl6 33 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <  M  -> DECID  K  e.  ( M ... N ) ) )
14 orc 712 . . . . 5  |-  ( K  e.  ( M ... N )  ->  ( K  e.  ( M ... N )  \/  -.  K  e.  ( M ... N ) ) )
1514, 11sylibr 134 . . . 4  |-  ( K  e.  ( M ... N )  -> DECID  K  e.  ( M ... N ) )
1615a1i 9 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  -> DECID  K  e.  ( M ... N ) ) )
17 zltnle 9301 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  <  K  <->  -.  K  <_  N )
)
1817ancoms 268 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  K  <->  -.  K  <_  N )
)
19183adant2 1016 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  K  <->  -.  K  <_  N ) )
20 simpr 110 . . . . . . 7  |-  ( ( M  <_  K  /\  K  <_  N )  ->  K  <_  N )
2120con3i 632 . . . . . 6  |-  ( -.  K  <_  N  ->  -.  ( M  <_  K  /\  K  <_  N ) )
2219, 21biimtrdi 163 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  K  ->  -.  ( M  <_  K  /\  K  <_  N ) ) )
2322, 8nsyld 648 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  K  ->  -.  K  e.  ( M ... N ) ) )
2423, 12syl6 33 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  K  -> DECID  K  e.  ( M ... N ) ) )
2513, 16, 243jaod 1304 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  <  M  \/  K  e.  ( M ... N )  \/  N  <  K )  -> DECID 
K  e.  ( M ... N ) ) )
261, 25mpd 13 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  K  e.  ( M ... N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    \/ w3o 977    /\ w3a 978    e. wcel 2148   class class class wbr 4005  (class class class)co 5877    < clt 7994    <_ cle 7995   ZZcz 9255   ...cfz 10010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-fz 10011
This theorem is referenced by:  fzodcel  10154  iseqf1olemqcl  10488  iseqf1olemmo  10494  bcval  10731  bccmpl  10736  bcval5  10745  bcpasc  10748  bccl  10749  fisumss  11402  fsum3ser  11407  binomlem  11493  mertenslemi1  11545  fprodssdc  11600  fprodm1  11608  fprodeq0  11627  pcfac  12350
  Copyright terms: Public domain W3C validator