ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzdcel Unicode version

Theorem fzdcel 10134
Description: Decidability of membership in a finite interval of integers. (Contributed by Jim Kingdon, 1-Jun-2020.)
Assertion
Ref Expression
fzdcel  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  K  e.  ( M ... N ) )

Proof of Theorem fzdcel
StepHypRef Expression
1 fztri3or 10133 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <  M  \/  K  e.  ( M ... N
)  \/  N  < 
K ) )
2 zltnle 9391 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( K  <  M  <->  -.  M  <_  K )
)
323adant3 1019 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <  M  <->  -.  M  <_  K ) )
4 simpl 109 . . . . . . 7  |-  ( ( M  <_  K  /\  K  <_  N )  ->  M  <_  K )
54con3i 633 . . . . . 6  |-  ( -.  M  <_  K  ->  -.  ( M  <_  K  /\  K  <_  N ) )
63, 5biimtrdi 163 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <  M  ->  -.  ( M  <_  K  /\  K  <_  N ) ) )
7 elfz 10108 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <->  ( M  <_  K  /\  K  <_  N ) ) )
87biimpd 144 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  ->  ( M  <_  K  /\  K  <_  N ) ) )
96, 8nsyld 649 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <  M  ->  -.  K  e.  ( M ... N ) ) )
10 olc 712 . . . . 5  |-  ( -.  K  e.  ( M ... N )  -> 
( K  e.  ( M ... N )  \/  -.  K  e.  ( M ... N
) ) )
11 df-dc 836 . . . . 5  |-  (DECID  K  e.  ( M ... N
)  <->  ( K  e.  ( M ... N
)  \/  -.  K  e.  ( M ... N
) ) )
1210, 11sylibr 134 . . . 4  |-  ( -.  K  e.  ( M ... N )  -> DECID  K  e.  ( M ... N
) )
139, 12syl6 33 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <  M  -> DECID  K  e.  ( M ... N ) ) )
14 orc 713 . . . . 5  |-  ( K  e.  ( M ... N )  ->  ( K  e.  ( M ... N )  \/  -.  K  e.  ( M ... N ) ) )
1514, 11sylibr 134 . . . 4  |-  ( K  e.  ( M ... N )  -> DECID  K  e.  ( M ... N ) )
1615a1i 9 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  -> DECID  K  e.  ( M ... N ) ) )
17 zltnle 9391 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  <  K  <->  -.  K  <_  N )
)
1817ancoms 268 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  K  <->  -.  K  <_  N )
)
19183adant2 1018 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  K  <->  -.  K  <_  N ) )
20 simpr 110 . . . . . . 7  |-  ( ( M  <_  K  /\  K  <_  N )  ->  K  <_  N )
2120con3i 633 . . . . . 6  |-  ( -.  K  <_  N  ->  -.  ( M  <_  K  /\  K  <_  N ) )
2219, 21biimtrdi 163 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  K  ->  -.  ( M  <_  K  /\  K  <_  N ) ) )
2322, 8nsyld 649 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  K  ->  -.  K  e.  ( M ... N ) ) )
2423, 12syl6 33 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  K  -> DECID  K  e.  ( M ... N ) ) )
2513, 16, 243jaod 1315 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  <  M  \/  K  e.  ( M ... N )  \/  N  <  K )  -> DECID 
K  e.  ( M ... N ) ) )
261, 25mpd 13 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  K  e.  ( M ... N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    \/ w3o 979    /\ w3a 980    e. wcel 2167   class class class wbr 4034  (class class class)co 5925    < clt 8080    <_ cle 8081   ZZcz 9345   ...cfz 10102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-inn 9010  df-n0 9269  df-z 9346  df-fz 10103
This theorem is referenced by:  fzodcel  10247  iseqf1olemqcl  10610  iseqf1olemmo  10616  seqf1oglem1  10630  seqf1oglem2  10631  bcval  10860  bccmpl  10865  bcval5  10874  bcpasc  10877  bccl  10878  fisumss  11576  fsum3ser  11581  binomlem  11667  mertenslemi1  11719  fprodssdc  11774  fprodm1  11782  fprodeq0  11801  pcfac  12546  elply2  15079  elplyd  15085  ply1termlem  15086  plyaddlem1  15091  plymullem1  15092  plycoeid3  15101  dvply1  15109
  Copyright terms: Public domain W3C validator