| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzdcel | Unicode version | ||
| Description: Decidability of membership in a finite interval of integers. (Contributed by Jim Kingdon, 1-Jun-2020.) |
| Ref | Expression |
|---|---|
| fzdcel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fztri3or 10133 |
. 2
| |
| 2 | zltnle 9391 |
. . . . . . 7
| |
| 3 | 2 | 3adant3 1019 |
. . . . . 6
|
| 4 | simpl 109 |
. . . . . . 7
| |
| 5 | 4 | con3i 633 |
. . . . . 6
|
| 6 | 3, 5 | biimtrdi 163 |
. . . . 5
|
| 7 | elfz 10108 |
. . . . . 6
| |
| 8 | 7 | biimpd 144 |
. . . . 5
|
| 9 | 6, 8 | nsyld 649 |
. . . 4
|
| 10 | olc 712 |
. . . . 5
| |
| 11 | df-dc 836 |
. . . . 5
| |
| 12 | 10, 11 | sylibr 134 |
. . . 4
|
| 13 | 9, 12 | syl6 33 |
. . 3
|
| 14 | orc 713 |
. . . . 5
| |
| 15 | 14, 11 | sylibr 134 |
. . . 4
|
| 16 | 15 | a1i 9 |
. . 3
|
| 17 | zltnle 9391 |
. . . . . . . 8
| |
| 18 | 17 | ancoms 268 |
. . . . . . 7
|
| 19 | 18 | 3adant2 1018 |
. . . . . 6
|
| 20 | simpr 110 |
. . . . . . 7
| |
| 21 | 20 | con3i 633 |
. . . . . 6
|
| 22 | 19, 21 | biimtrdi 163 |
. . . . 5
|
| 23 | 22, 8 | nsyld 649 |
. . . 4
|
| 24 | 23, 12 | syl6 33 |
. . 3
|
| 25 | 13, 16, 24 | 3jaod 1315 |
. 2
|
| 26 | 1, 25 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-0id 8006 ax-rnegex 8007 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-inn 9010 df-n0 9269 df-z 9346 df-fz 10103 |
| This theorem is referenced by: fzodcel 10247 iseqf1olemqcl 10610 iseqf1olemmo 10616 seqf1oglem1 10630 seqf1oglem2 10631 bcval 10860 bccmpl 10865 bcval5 10874 bcpasc 10877 bccl 10878 fisumss 11576 fsum3ser 11581 binomlem 11667 mertenslemi1 11719 fprodssdc 11774 fprodm1 11782 fprodeq0 11801 pcfac 12546 elply2 15079 elplyd 15085 ply1termlem 15086 plyaddlem1 15091 plymullem1 15092 plycoeid3 15101 dvply1 15109 |
| Copyright terms: Public domain | W3C validator |