ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzdcel Unicode version

Theorem fzdcel 9975
Description: Decidability of membership in a finite interval of integers. (Contributed by Jim Kingdon, 1-Jun-2020.)
Assertion
Ref Expression
fzdcel  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  K  e.  ( M ... N ) )

Proof of Theorem fzdcel
StepHypRef Expression
1 fztri3or 9974 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <  M  \/  K  e.  ( M ... N
)  \/  N  < 
K ) )
2 zltnle 9237 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( K  <  M  <->  -.  M  <_  K )
)
323adant3 1007 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <  M  <->  -.  M  <_  K ) )
4 simpl 108 . . . . . . 7  |-  ( ( M  <_  K  /\  K  <_  N )  ->  M  <_  K )
54con3i 622 . . . . . 6  |-  ( -.  M  <_  K  ->  -.  ( M  <_  K  /\  K  <_  N ) )
63, 5syl6bi 162 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <  M  ->  -.  ( M  <_  K  /\  K  <_  N ) ) )
7 elfz 9950 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <->  ( M  <_  K  /\  K  <_  N ) ) )
87biimpd 143 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  ->  ( M  <_  K  /\  K  <_  N ) ) )
96, 8nsyld 638 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <  M  ->  -.  K  e.  ( M ... N ) ) )
10 olc 701 . . . . 5  |-  ( -.  K  e.  ( M ... N )  -> 
( K  e.  ( M ... N )  \/  -.  K  e.  ( M ... N
) ) )
11 df-dc 825 . . . . 5  |-  (DECID  K  e.  ( M ... N
)  <->  ( K  e.  ( M ... N
)  \/  -.  K  e.  ( M ... N
) ) )
1210, 11sylibr 133 . . . 4  |-  ( -.  K  e.  ( M ... N )  -> DECID  K  e.  ( M ... N
) )
139, 12syl6 33 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <  M  -> DECID  K  e.  ( M ... N ) ) )
14 orc 702 . . . . 5  |-  ( K  e.  ( M ... N )  ->  ( K  e.  ( M ... N )  \/  -.  K  e.  ( M ... N ) ) )
1514, 11sylibr 133 . . . 4  |-  ( K  e.  ( M ... N )  -> DECID  K  e.  ( M ... N ) )
1615a1i 9 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  -> DECID  K  e.  ( M ... N ) ) )
17 zltnle 9237 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  <  K  <->  -.  K  <_  N )
)
1817ancoms 266 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  K  <->  -.  K  <_  N )
)
19183adant2 1006 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  K  <->  -.  K  <_  N ) )
20 simpr 109 . . . . . . 7  |-  ( ( M  <_  K  /\  K  <_  N )  ->  K  <_  N )
2120con3i 622 . . . . . 6  |-  ( -.  K  <_  N  ->  -.  ( M  <_  K  /\  K  <_  N ) )
2219, 21syl6bi 162 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  K  ->  -.  ( M  <_  K  /\  K  <_  N ) ) )
2322, 8nsyld 638 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  K  ->  -.  K  e.  ( M ... N ) ) )
2423, 12syl6 33 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  K  -> DECID  K  e.  ( M ... N ) ) )
2513, 16, 243jaod 1294 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  <  M  \/  K  e.  ( M ... N )  \/  N  <  K )  -> DECID 
K  e.  ( M ... N ) ) )
261, 25mpd 13 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  K  e.  ( M ... N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824    \/ w3o 967    /\ w3a 968    e. wcel 2136   class class class wbr 3982  (class class class)co 5842    < clt 7933    <_ cle 7934   ZZcz 9191   ...cfz 9944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-fz 9945
This theorem is referenced by:  fzodcel  10087  iseqf1olemqcl  10421  iseqf1olemmo  10427  bcval  10662  bccmpl  10667  bcval5  10676  bcpasc  10679  bccl  10680  fisumss  11333  fsum3ser  11338  binomlem  11424  mertenslemi1  11476  fprodssdc  11531  fprodm1  11539  fprodeq0  11558  pcfac  12280
  Copyright terms: Public domain W3C validator