ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzdcel Unicode version

Theorem fzdcel 10162
Description: Decidability of membership in a finite interval of integers. (Contributed by Jim Kingdon, 1-Jun-2020.)
Assertion
Ref Expression
fzdcel  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  K  e.  ( M ... N ) )

Proof of Theorem fzdcel
StepHypRef Expression
1 fztri3or 10161 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <  M  \/  K  e.  ( M ... N
)  \/  N  < 
K ) )
2 zltnle 9418 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( K  <  M  <->  -.  M  <_  K )
)
323adant3 1020 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <  M  <->  -.  M  <_  K ) )
4 simpl 109 . . . . . . 7  |-  ( ( M  <_  K  /\  K  <_  N )  ->  M  <_  K )
54con3i 633 . . . . . 6  |-  ( -.  M  <_  K  ->  -.  ( M  <_  K  /\  K  <_  N ) )
63, 5biimtrdi 163 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <  M  ->  -.  ( M  <_  K  /\  K  <_  N ) ) )
7 elfz 10136 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <->  ( M  <_  K  /\  K  <_  N ) ) )
87biimpd 144 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  ->  ( M  <_  K  /\  K  <_  N ) ) )
96, 8nsyld 649 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <  M  ->  -.  K  e.  ( M ... N ) ) )
10 olc 713 . . . . 5  |-  ( -.  K  e.  ( M ... N )  -> 
( K  e.  ( M ... N )  \/  -.  K  e.  ( M ... N
) ) )
11 df-dc 837 . . . . 5  |-  (DECID  K  e.  ( M ... N
)  <->  ( K  e.  ( M ... N
)  \/  -.  K  e.  ( M ... N
) ) )
1210, 11sylibr 134 . . . 4  |-  ( -.  K  e.  ( M ... N )  -> DECID  K  e.  ( M ... N
) )
139, 12syl6 33 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <  M  -> DECID  K  e.  ( M ... N ) ) )
14 orc 714 . . . . 5  |-  ( K  e.  ( M ... N )  ->  ( K  e.  ( M ... N )  \/  -.  K  e.  ( M ... N ) ) )
1514, 11sylibr 134 . . . 4  |-  ( K  e.  ( M ... N )  -> DECID  K  e.  ( M ... N ) )
1615a1i 9 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  -> DECID  K  e.  ( M ... N ) ) )
17 zltnle 9418 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  <  K  <->  -.  K  <_  N )
)
1817ancoms 268 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  K  <->  -.  K  <_  N )
)
19183adant2 1019 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  K  <->  -.  K  <_  N ) )
20 simpr 110 . . . . . . 7  |-  ( ( M  <_  K  /\  K  <_  N )  ->  K  <_  N )
2120con3i 633 . . . . . 6  |-  ( -.  K  <_  N  ->  -.  ( M  <_  K  /\  K  <_  N ) )
2219, 21biimtrdi 163 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  K  ->  -.  ( M  <_  K  /\  K  <_  N ) ) )
2322, 8nsyld 649 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  K  ->  -.  K  e.  ( M ... N ) ) )
2423, 12syl6 33 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  K  -> DECID  K  e.  ( M ... N ) ) )
2513, 16, 243jaod 1317 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  <  M  \/  K  e.  ( M ... N )  \/  N  <  K )  -> DECID 
K  e.  ( M ... N ) ) )
261, 25mpd 13 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  K  e.  ( M ... N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    \/ w3o 980    /\ w3a 981    e. wcel 2176   class class class wbr 4044  (class class class)co 5944    < clt 8107    <_ cle 8108   ZZcz 9372   ...cfz 10130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-fz 10131
This theorem is referenced by:  fzodcel  10275  iseqf1olemqcl  10644  iseqf1olemmo  10650  seqf1oglem1  10664  seqf1oglem2  10665  bcval  10894  bccmpl  10899  bcval5  10908  bcpasc  10911  bccl  10912  fisumss  11703  fsum3ser  11708  binomlem  11794  mertenslemi1  11846  fprodssdc  11901  fprodm1  11909  fprodeq0  11928  pcfac  12673  elply2  15207  elplyd  15213  ply1termlem  15214  plyaddlem1  15219  plymullem1  15220  plycoeid3  15229  dvply1  15237
  Copyright terms: Public domain W3C validator