HomeHome Intuitionistic Logic Explorer
Theorem List (p. 7 of 141)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 601-700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembi2anan9 601 Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( th  ->  ( ta  <->  et ) )   =>    |-  ( ( ph  /\ 
 th )  ->  (
 ( ps  /\  ta ) 
 <->  ( ch  /\  et ) ) )
 
Theorembi2anan9r 602 Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 19-Feb-1996.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( th  ->  ( ta  <->  et ) )   =>    |-  ( ( th  /\  ph )  ->  ( ( ps  /\  ta )  <->  ( ch  /\  et )
 ) )
 
Theorembi2bian9 603 Deduction joining two biconditionals with different antecedents. (Contributed by NM, 12-May-2004.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( th  ->  ( ta  <->  et ) )   =>    |-  ( ( ph  /\ 
 th )  ->  (
 ( ps  <->  ta )  <->  ( ch  <->  et ) ) )
 
Theorempm5.33 604 Theorem *5.33 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ph  /\  ( ps  ->  ch ) )  <->  ( ph  /\  (
 ( ph  /\  ps )  ->  ch ) ) )
 
Theorempm5.36 605 Theorem *5.36 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ph  /\  ( ph 
 <->  ps ) )  <->  ( ps  /\  ( ph  <->  ps ) ) )
 
Theorembianabs 606 Absorb a hypothesis into the second member of a biconditional. (Contributed by FL, 15-Feb-2007.)
 |-  ( ph  ->  ( ps 
 <->  ( ph  /\  ch ) ) )   =>    |-  ( ph  ->  ( ps  <->  ch ) )
 
Theorembiadani 607 An implication implies to the equivalence of some implied equivalence and some other equivalence involving a conjunction. (Contributed by BJ, 4-Mar-2023.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ps  ->  ( ph 
 <->  ch ) )  <->  ( ph  <->  ( ps  /\  ch ) ) )
 
Theorembiadanii 608 Inference associated with biadani 607. Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011.) (Proof shortened by BJ, 4-Mar-2023.)
 |-  ( ph  ->  ps )   &    |-  ( ps  ->  ( ph  <->  ch ) )   =>    |-  ( ph  <->  ( ps  /\  ch ) )
 
1.2.5  Logical negation (intuitionistic)
 
Axiomax-in1 609 'Not' introduction. One of the axioms of propositional logic. (Contributed by Mario Carneiro, 31-Jan-2015.) Use its alias pm2.01 611 instead. (New usage is discouraged.)
 |-  ( ( ph  ->  -.  ph )  ->  -.  ph )
 
Axiomax-in2 610 'Not' elimination. One of the axioms of propositional logic. (Contributed by Mario Carneiro, 31-Jan-2015.)
 |-  ( -.  ph  ->  (
 ph  ->  ps ) )
 
Theorempm2.01 611 Reductio ad absurdum. Theorem *2.01 of [WhiteheadRussell] p. 100. This is valid intuitionistically (in the terminology of Section 1.2 of [Bauer] p. 482 it is a proof of negation not a proof by contradiction); compare with pm2.18dc 850 which only holds for some propositions. Also called weak Clavius law. (Contributed by Mario Carneiro, 12-May-2015.)
 |-  ( ( ph  ->  -.  ph )  ->  -.  ph )
 
Theorempm2.21 612 From a wff and its negation, anything is true. Theorem *2.21 of [WhiteheadRussell] p. 104. Also called the Duns Scotus law. (Contributed by Mario Carneiro, 12-May-2015.)
 |-  ( -.  ph  ->  (
 ph  ->  ps ) )
 
Theorempm2.01d 613 Deduction based on reductio ad absurdum. (Contributed by NM, 18-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.)
 |-  ( ph  ->  ( ps  ->  -.  ps )
 )   =>    |-  ( ph  ->  -.  ps )
 
Theorempm2.21d 614 A contradiction implies anything. Deduction from pm2.21 612. (Contributed by NM, 10-Feb-1996.)
 |-  ( ph  ->  -.  ps )   =>    |-  ( ph  ->  ( ps  ->  ch ) )
 
Theorempm2.21dd 615 A contradiction implies anything. Deduction from pm2.21 612. (Contributed by Mario Carneiro, 9-Feb-2017.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  -.  ps )   =>    |-  ( ph  ->  ch )
 
Theorempm2.24 616 Theorem *2.24 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.)
 |-  ( ph  ->  ( -.  ph  ->  ps )
 )
 
Theorempm2.24d 617 Deduction version of pm2.24 616. (Contributed by NM, 30-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2015.)
 |-  ( ph  ->  ps )   =>    |-  ( ph  ->  ( -.  ps  ->  ch ) )
 
Theorempm2.24i 618 Inference version of pm2.24 616. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 31-Jan-2015.)
 |-  ph   =>    |-  ( -.  ph  ->  ps )
 
Theoremcon2d 619 A contraposition deduction. (Contributed by NM, 19-Aug-1993.) (Revised by NM, 12-Feb-2013.)
 |-  ( ph  ->  ( ps  ->  -.  ch )
 )   =>    |-  ( ph  ->  ( ch  ->  -.  ps )
 )
 
Theoremmt2d 620 Modus tollens deduction. (Contributed by NM, 4-Jul-1994.)
 |-  ( ph  ->  ch )   &    |-  ( ph  ->  ( ps  ->  -. 
 ch ) )   =>    |-  ( ph  ->  -. 
 ps )
 
Theoremnsyl3 621 A negated syllogism inference. (Contributed by NM, 1-Dec-1995.) (Revised by NM, 13-Jun-2013.)
 |-  ( ph  ->  -.  ps )   &    |-  ( ch  ->  ps )   =>    |-  ( ch  ->  -.  ph )
 
Theoremcon2i 622 A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.)
 |-  ( ph  ->  -.  ps )   =>    |-  ( ps  ->  -.  ph )
 
Theoremnsyl 623 A negated syllogism inference. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 2-Mar-2013.)
 |-  ( ph  ->  -.  ps )   &    |-  ( ch  ->  ps )   =>    |-  ( ph  ->  -.  ch )
 
Theoremnotnot 624 Double negation introduction. Theorem *2.12 of [WhiteheadRussell] p. 101. The converse need not hold. It holds exactly for stable propositions (by definition, see df-stab 826) and in particular for decidable propositions (see notnotrdc 838). See also notnotnot 629. (Contributed by NM, 28-Dec-1992.) (Proof shortened by Wolf Lammen, 2-Mar-2013.)
 |-  ( ph  ->  -.  -.  ph )
 
Theoremnotnotd 625 Deduction associated with notnot 624 and notnoti 640. (Contributed by Jarvin Udandy, 2-Sep-2016.) Avoid biconditional. (Revised by Wolf Lammen, 27-Mar-2021.)
 |-  ( ph  ->  ps )   =>    |-  ( ph  ->  -.  -.  ps )
 
Theoremcon3d 626 A contraposition deduction. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 31-Jan-2015.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  ( -.  ch  ->  -.  ps ) )
 
Theoremcon3i 627 A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 20-Jun-2013.)
 |-  ( ph  ->  ps )   =>    |-  ( -.  ps  ->  -.  ph )
 
Theoremcon3rr3 628 Rotate through consequent right. (Contributed by Wolf Lammen, 3-Nov-2013.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( -.  ch  ->  ( ph  ->  -.  ps ) )
 
Theoremnotnotnot 629 Triple negation is equivalent to negation. (Contributed by Jim Kingdon, 28-Jul-2018.)
 |-  ( -.  -.  -.  ph  <->  -.  ph )
 
Theoremcon3dimp 630 Variant of con3d 626 with importation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ( ph  /\ 
 -.  ch )  ->  -.  ps )
 
Theorempm2.01da 631 Deduction based on reductio ad absurdum. (Contributed by Mario Carneiro, 9-Feb-2017.)
 |-  ( ( ph  /\  ps )  ->  -.  ps )   =>    |-  ( ph  ->  -.  ps )
 
Theorempm3.2im 632 In classical logic, this is just a restatement of pm3.2 138. In intuitionistic logic, it still holds, but is weaker than pm3.2. (Contributed by Mario Carneiro, 12-May-2015.)
 |-  ( ph  ->  ( ps  ->  -.  ( ph  ->  -.  ps ) ) )
 
Theoremexpi 633 An exportation inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.)
 |-  ( -.  ( ph  ->  -.  ps )  ->  ch )   =>    |-  ( ph  ->  ( ps  ->  ch ) )
 
Theorempm2.65i 634 Inference for proof by contradiction. (Contributed by NM, 18-May-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  -.  ps )   =>    |-  -.  ph
 
Theoremmt2 635 A rule similar to modus tollens. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 10-Sep-2013.)
 |- 
 ps   &    |-  ( ph  ->  -.  ps )   =>    |- 
 -.  ph
 
Theorembiijust 636 Theorem used to justify definition of intuitionistic biconditional df-bi 116. (Contributed by NM, 24-Nov-2017.)
 |-  ( ( ( (
 ph  ->  ps )  /\  ( ps  ->  ph ) )  ->  ( ( ph  ->  ps )  /\  ( ps 
 ->  ph ) ) ) 
 /\  ( ( (
 ph  ->  ps )  /\  ( ps  ->  ph ) )  ->  ( ( ph  ->  ps )  /\  ( ps 
 ->  ph ) ) ) )
 
Theoremcon3 637 Contraposition. Theorem *2.16 of [WhiteheadRussell] p. 103. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 13-Feb-2013.)
 |-  ( ( ph  ->  ps )  ->  ( -.  ps 
 ->  -.  ph ) )
 
Theoremcon2 638 Contraposition. Theorem *2.03 of [WhiteheadRussell] p. 100. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Feb-2013.)
 |-  ( ( ph  ->  -. 
 ps )  ->  ( ps  ->  -.  ph ) )
 
Theoremmt2i 639 Modus tollens inference. (Contributed by NM, 26-Mar-1995.) (Proof shortened by Wolf Lammen, 15-Sep-2012.)
 |- 
 ch   &    |-  ( ph  ->  ( ps  ->  -.  ch )
 )   =>    |-  ( ph  ->  -.  ps )
 
Theoremnotnoti 640 Infer double negation. (Contributed by NM, 27-Feb-2008.)
 |-  ph   =>    |- 
 -.  -.  ph
 
Theorempm2.21i 641 A contradiction implies anything. Inference from pm2.21 612. (Contributed by NM, 16-Sep-1993.) (Revised by Mario Carneiro, 31-Jan-2015.)
 |- 
 -.  ph   =>    |-  ( ph  ->  ps )
 
Theorempm2.24ii 642 A contradiction implies anything. Inference from pm2.24 616. (Contributed by NM, 27-Feb-2008.)
 |-  ph   &    |- 
 -.  ph   =>    |- 
 ps
 
Theoremnsyld 643 A negated syllogism deduction. (Contributed by NM, 9-Apr-2005.)
 |-  ( ph  ->  ( ps  ->  -.  ch )
 )   &    |-  ( ph  ->  ( ta  ->  ch ) )   =>    |-  ( ph  ->  ( ps  ->  -.  ta )
 )
 
Theoremnsyli 644 A negated syllogism inference. (Contributed by NM, 3-May-1994.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( th  ->  -.  ch )   =>    |-  ( ph  ->  ( th  ->  -. 
 ps ) )
 
Theoremjc 645 Inference joining the consequents of two premises. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   =>    |-  ( ph  ->  -.  ( ps  ->  -.  ch )
 )
 
Theoremjcn 646 Theorem joining the consequents of two premises. Theorem 8 of [Margaris] p. 60. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.)
 |-  ( ph  ->  ( -.  ps  ->  -.  ( ph  ->  ps ) ) )
 
Theoremjcnd 647 Deduction joining the consequents of two premises. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by Wolf Lammen, 10-Apr-2024.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  -.  ch )   =>    |-  ( ph  ->  -.  ( ps  ->  ch ) )
 
Theoremconax1 648 Contrapositive of ax-1 6. (Contributed by BJ, 28-Oct-2023.)
 |-  ( -.  ( ph  ->  ps )  ->  -.  ps )
 
Theoremconax1k 649 Weakening of conax1 648. General instance of pm2.51 650 and of pm2.52 651. (Contributed by BJ, 28-Oct-2023.)
 |-  ( -.  ( ph  ->  ps )  ->  ( ch  ->  -.  ps )
 )
 
Theorempm2.51 650 Theorem *2.51 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
 |-  ( -.  ( ph  ->  ps )  ->  ( ph  ->  -.  ps )
 )
 
Theorempm2.52 651 Theorem *2.52 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) (Revised by Mario Carneiro, 31-Jan-2015.)
 |-  ( -.  ( ph  ->  ps )  ->  ( -.  ph  ->  -.  ps )
 )
 
Theoremexpt 652 Exportation theorem pm3.3 259 (closed form of ex 114) expressed with primitive connectives. (Contributed by NM, 5-Aug-1993.)
 |-  ( ( -.  ( ph  ->  -.  ps )  ->  ch )  ->  ( ph  ->  ( ps  ->  ch ) ) )
 
Theoremjarl 653 Elimination of a nested antecedent. (Contributed by Wolf Lammen, 10-May-2013.)
 |-  ( ( ( ph  ->  ps )  ->  ch )  ->  ( -.  ph  ->  ch ) )
 
Theorempm2.65 654 Theorem *2.65 of [WhiteheadRussell] p. 107. Proof by contradiction. Proofs, such as this one, which assume a proposition, here  ph, derive a contradiction, and therefore conclude  -. 
ph, are valid intuitionistically (and can be called "proof of negation", for example by Section 1.2 of [Bauer] p. 482). By contrast, proofs which assume  -.  ph, derive a contradiction, and conclude  ph, such as condandc 876, are only valid for decidable propositions. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 8-Mar-2013.)
 |-  ( ( ph  ->  ps )  ->  ( ( ph  ->  -.  ps )  ->  -.  ph ) )
 
Theorempm2.65d 655 Deduction for proof by contradiction. (Contributed by NM, 26-Jun-1994.) (Proof shortened by Wolf Lammen, 26-May-2013.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( ph  ->  ( ps  ->  -. 
 ch ) )   =>    |-  ( ph  ->  -. 
 ps )
 
Theorempm2.65da 656 Deduction for proof by contradiction. (Contributed by NM, 12-Jun-2014.)
 |-  ( ( ph  /\  ps )  ->  ch )   &    |-  ( ( ph  /\ 
 ps )  ->  -.  ch )   =>    |-  ( ph  ->  -.  ps )
 
Theoremmto 657 The rule of modus tollens. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.)
 |- 
 -.  ps   &    |-  ( ph  ->  ps )   =>    |- 
 -.  ph
 
Theoremmtod 658 Modus tollens deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.)
 |-  ( ph  ->  -.  ch )   &    |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  -. 
 ps )
 
Theoremmtoi 659 Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.)
 |- 
 -.  ch   &    |-  ( ph  ->  ( ps  ->  ch )
 )   =>    |-  ( ph  ->  -.  ps )
 
Theoremmtand 660 A modus tollens deduction. (Contributed by Jeff Hankins, 19-Aug-2009.)
 |-  ( ph  ->  -.  ch )   &    |-  ( ( ph  /\  ps )  ->  ch )   =>    |-  ( ph  ->  -.  ps )
 
Theoremnotbi 661 Equivalence property for negation. Closed form. (Contributed by BJ, 27-Jan-2020.)
 |-  ( ( ph  <->  ps )  ->  ( -.  ph  <->  -.  ps ) )
 
Theoremnotbid 662 Equivalence property for negation. Deduction form. (Contributed by NM, 21-May-1994.) (Revised by Mario Carneiro, 31-Jan-2015.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( -.  ps  <->  -.  ch ) )
 
Theoremnotbii 663 Equivalence property for negation. Inference form. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.)
 |-  ( ph  <->  ps )   =>    |-  ( -.  ph  <->  -.  ps )
 
Theoremcon2b 664 Contraposition. Bidirectional version of con2 638. (Contributed by NM, 5-Aug-1993.)
 |-  ( ( ph  ->  -. 
 ps )  <->  ( ps  ->  -.  ph ) )
 
Theoremmtbi 665 An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Oct-2012.)
 |- 
 -.  ph   &    |-  ( ph  <->  ps )   =>    |- 
 -.  ps
 
Theoremmtbir 666 An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.)
 |- 
 -.  ps   &    |-  ( ph  <->  ps )   =>    |- 
 -.  ph
 
Theoremmtbid 667 A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995.)
 |-  ( ph  ->  -.  ps )   &    |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  -. 
 ch )
 
Theoremmtbird 668 A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 10-May-1994.)
 |-  ( ph  ->  -.  ch )   &    |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  -. 
 ps )
 
Theoremmtbii 669 An inference from a biconditional, similar to modus tollens. (Contributed by NM, 27-Nov-1995.)
 |- 
 -.  ps   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  -. 
 ch )
 
Theoremmtbiri 670 An inference from a biconditional, similar to modus tollens. (Contributed by NM, 24-Aug-1995.)
 |- 
 -.  ch   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  -. 
 ps )
 
Theoremsylnib 671 A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.)
 |-  ( ph  ->  -.  ps )   &    |-  ( ps  <->  ch )   =>    |-  ( ph  ->  -.  ch )
 
Theoremsylnibr 672 A mixed syllogism inference from an implication and a biconditional. Useful for substituting an consequent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.)
 |-  ( ph  ->  -.  ps )   &    |-  ( ch  <->  ps )   =>    |-  ( ph  ->  -.  ch )
 
Theoremsylnbi 673 A mixed syllogism inference from a biconditional and an implication. Useful for substituting an antecedent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.)
 |-  ( ph  <->  ps )   &    |-  ( -.  ps  ->  ch )   =>    |-  ( -.  ph  ->  ch )
 
Theoremsylnbir 674 A mixed syllogism inference from a biconditional and an implication. (Contributed by Wolf Lammen, 16-Dec-2013.)
 |-  ( ps  <->  ph )   &    |-  ( -.  ps  ->  ch )   =>    |-  ( -.  ph  ->  ch )
 
Theoremxchnxbi 675 Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.)
 |-  ( -.  ph  <->  ps )   &    |-  ( ph  <->  ch )   =>    |-  ( -.  ch  <->  ps )
 
Theoremxchnxbir 676 Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.)
 |-  ( -.  ph  <->  ps )   &    |-  ( ch  <->  ph )   =>    |-  ( -.  ch  <->  ps )
 
Theoremxchbinx 677 Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.)
 |-  ( ph  <->  -.  ps )   &    |-  ( ps 
 <->  ch )   =>    |-  ( ph  <->  -.  ch )
 
Theoremxchbinxr 678 Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.)
 |-  ( ph  <->  -.  ps )   &    |-  ( ch 
 <->  ps )   =>    |-  ( ph  <->  -.  ch )
 
Theoremmt2bi 679 A false consequent falsifies an antecedent. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Nov-2012.)
 |-  ph   =>    |-  ( -.  ps  <->  ( ps  ->  -.  ph ) )
 
Theoremmtt 680 Modus-tollens-like theorem. (Contributed by NM, 7-Apr-2001.) (Revised by Mario Carneiro, 31-Jan-2015.)
 |-  ( -.  ph  ->  ( -.  ps  <->  ( ps  ->  ph ) ) )
 
Theoremannimim 681 Express conjunction in terms of implication. One direction of Theorem *4.61 of [WhiteheadRussell] p. 120. The converse holds for decidable propositions, as can be seen at annimdc 932. (Contributed by Jim Kingdon, 24-Dec-2017.)
 |-  ( ( ph  /\  -.  ps )  ->  -.  ( ph  ->  ps ) )
 
Theorempm4.65r 682 One direction of Theorem *4.65 of [WhiteheadRussell] p. 120. The converse holds in classical logic. (Contributed by Jim Kingdon, 28-Jul-2018.)
 |-  ( ( -.  ph  /\ 
 -.  ps )  ->  -.  ( -.  ph  ->  ps )
 )
 
Theoremimanim 683 Express implication in terms of conjunction. The converse only holds given a decidability condition; see imandc 884. (Contributed by Jim Kingdon, 24-Dec-2017.)
 |-  ( ( ph  ->  ps )  ->  -.  ( ph  /\  -.  ps )
 )
 
Theorempm3.37 684 Theorem *3.37 (Transp) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ( ph  /\ 
 ps )  ->  ch )  ->  ( ( ph  /\  -.  ch )  ->  -.  ps )
 )
 
Theoremimnan 685 Express implication in terms of conjunction. (Contributed by NM, 9-Apr-1994.) (Revised by Mario Carneiro, 1-Feb-2015.)
 |-  ( ( ph  ->  -. 
 ps )  <->  -.  ( ph  /\  ps ) )
 
Theoremimnani 686 Express implication in terms of conjunction. (Contributed by Mario Carneiro, 28-Sep-2015.)
 |- 
 -.  ( ph  /\  ps )   =>    |-  ( ph  ->  -.  ps )
 
Theoremnan 687 Theorem to move a conjunct in and out of a negation. (Contributed by NM, 9-Nov-2003.)
 |-  ( ( ph  ->  -.  ( ps  /\  ch ) )  <->  ( ( ph  /\ 
 ps )  ->  -.  ch ) )
 
Theorempm3.24 688 Law of noncontradiction. Theorem *3.24 of [WhiteheadRussell] p. 111 (who call it the "law of contradiction"). (Contributed by NM, 16-Sep-1993.) (Revised by Mario Carneiro, 2-Feb-2015.)
 |- 
 -.  ( ph  /\  -.  ph )
 
Theorempm4.15 689 Theorem *4.15 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 18-Nov-2012.)
 |-  ( ( ( ph  /\ 
 ps )  ->  -.  ch ) 
 <->  ( ( ps  /\  ch )  ->  -.  ph )
 )
 
Theorempm5.21 690 Two propositions are equivalent if they are both false. Theorem *5.21 of [WhiteheadRussell] p. 124. (Contributed by NM, 21-May-1994.) (Revised by Mario Carneiro, 31-Jan-2015.)
 |-  ( ( -.  ph  /\ 
 -.  ps )  ->  ( ph 
 <->  ps ) )
 
Theorempm5.21im 691 Two propositions are equivalent if they are both false. Closed form of 2false 696. Equivalent to a biimpr 129-like version of the xor-connective. (Contributed by Wolf Lammen, 13-May-2013.) (Revised by Mario Carneiro, 31-Jan-2015.)
 |-  ( -.  ph  ->  ( -.  ps  ->  ( ph 
 <->  ps ) ) )
 
Theoremnbn2 692 The negation of a wff is equivalent to the wff's equivalence to falsehood. (Contributed by Juha Arpiainen, 19-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2015.)
 |-  ( -.  ph  ->  ( -.  ps  <->  ( ph  <->  ps ) ) )
 
Theorembibif 693 Transfer negation via an equivalence. (Contributed by NM, 3-Oct-2007.) (Proof shortened by Wolf Lammen, 28-Jan-2013.)
 |-  ( -.  ps  ->  ( ( ph  <->  ps )  <->  -.  ph ) )
 
Theoremnbn 694 The negation of a wff is equivalent to the wff's equivalence to falsehood. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 3-Oct-2013.)
 |- 
 -.  ph   =>    |-  ( -.  ps  <->  ( ps  <->  ph ) )
 
Theoremnbn3 695 Transfer falsehood via equivalence. (Contributed by NM, 11-Sep-2006.)
 |-  ph   =>    |-  ( -.  ps  <->  ( ps  <->  -.  ph ) )
 
Theorem2false 696 Two falsehoods are equivalent. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 31-Jan-2015.)
 |- 
 -.  ph   &    |-  -.  ps   =>    |-  ( ph  <->  ps )
 
Theorem2falsed 697 Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.)
 |-  ( ph  ->  -.  ps )   &    |-  ( ph  ->  -.  ch )   =>    |-  ( ph  ->  ( ps 
 <->  ch ) )
 
Theorempm5.21ni 698 Two propositions implying a false one are equivalent. (Contributed by NM, 16-Feb-1996.) (Proof shortened by Wolf Lammen, 19-May-2013.)
 |-  ( ph  ->  ps )   &    |-  ( ch  ->  ps )   =>    |-  ( -.  ps  ->  (
 ph 
 <->  ch ) )
 
Theorempm5.21nii 699 Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) (Revised by Mario Carneiro, 31-Jan-2015.)
 |-  ( ph  ->  ps )   &    |-  ( ch  ->  ps )   &    |-  ( ps  ->  (
 ph 
 <->  ch ) )   =>    |-  ( ph  <->  ch )
 
Theorempm5.21ndd 700 Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Revised by Mario Carneiro, 31-Jan-2015.)
 |-  ( ph  ->  ( ch  ->  ps ) )   &    |-  ( ph  ->  ( th  ->  ps ) )   &    |-  ( ph  ->  ( ps  ->  ( ch  <->  th ) ) )   =>    |-  ( ph  ->  ( ch  <->  th ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14035
  Copyright terms: Public domain < Previous  Next >