Home Intuitionistic Logic ExplorerTheorem List (p. 7 of 134) < Previous  Next > Browser slow? Try the Unicode version. Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 601-700   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theorembiadani 601 An implication implies to the equivalence of some implied equivalence and some other equivalence involving a conjunction. (Contributed by BJ, 4-Mar-2023.)

Theorembiadanii 602 Inference associated with biadani 601. Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011.) (Proof shortened by BJ, 4-Mar-2023.)

1.2.5  Logical negation (intuitionistic)

Axiomax-in1 603 'Not' introduction. One of the axioms of propositional logic. (Contributed by Mario Carneiro, 31-Jan-2015.) Use its alias pm2.01 605 instead. (New usage is discouraged.)

Axiomax-in2 604 'Not' elimination. One of the axioms of propositional logic. (Contributed by Mario Carneiro, 31-Jan-2015.)

Theorempm2.01 605 Reductio ad absurdum. Theorem *2.01 of [WhiteheadRussell] p. 100. This is valid intuitionistically (in the terminology of Section 1.2 of [Bauer] p. 482 it is a proof of negation not a proof by contradiction); compare with pm2.18dc 840 which only holds for some propositions. Also called weak Clavius law. (Contributed by Mario Carneiro, 12-May-2015.)

Theorempm2.21 606 From a wff and its negation, anything is true. Theorem *2.21 of [WhiteheadRussell] p. 104. Also called the Duns Scotus law. (Contributed by Mario Carneiro, 12-May-2015.)

Theorempm2.01d 607 Deduction based on reductio ad absurdum. (Contributed by NM, 18-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.)

Theorempm2.21d 608 A contradiction implies anything. Deduction from pm2.21 606. (Contributed by NM, 10-Feb-1996.)

Theorempm2.21dd 609 A contradiction implies anything. Deduction from pm2.21 606. (Contributed by Mario Carneiro, 9-Feb-2017.)

Theorempm2.24 610 Theorem *2.24 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.)

Theorempm2.24d 611 Deduction version of pm2.24 610. (Contributed by NM, 30-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2015.)

Theorempm2.24i 612 Inference version of pm2.24 610. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 31-Jan-2015.)

Theoremcon2d 613 A contraposition deduction. (Contributed by NM, 19-Aug-1993.) (Revised by NM, 12-Feb-2013.)

Theoremmt2d 614 Modus tollens deduction. (Contributed by NM, 4-Jul-1994.)

Theoremnsyl3 615 A negated syllogism inference. (Contributed by NM, 1-Dec-1995.) (Revised by NM, 13-Jun-2013.)

Theoremcon2i 616 A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.)

Theoremnsyl 617 A negated syllogism inference. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 2-Mar-2013.)

Theoremnotnot 618 Double negation introduction. Theorem *2.12 of [WhiteheadRussell] p. 101. The converse need not hold. It holds exactly for stable propositions (by definition, see df-stab 816) and in particular for decidable propositions (see notnotrdc 828). See also notnotnot 623. (Contributed by NM, 28-Dec-1992.) (Proof shortened by Wolf Lammen, 2-Mar-2013.)

Theoremnotnotd 619 Deduction associated with notnot 618 and notnoti 634. (Contributed by Jarvin Udandy, 2-Sep-2016.) Avoid biconditional. (Revised by Wolf Lammen, 27-Mar-2021.)

Theoremcon3d 620 A contraposition deduction. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 31-Jan-2015.)

Theoremcon3i 621 A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 20-Jun-2013.)

Theoremcon3rr3 622 Rotate through consequent right. (Contributed by Wolf Lammen, 3-Nov-2013.)

Theoremnotnotnot 623 Triple negation is equivalent to negation. (Contributed by Jim Kingdon, 28-Jul-2018.)

Theoremcon3dimp 624 Variant of con3d 620 with importation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)

Theorempm2.01da 625 Deduction based on reductio ad absurdum. (Contributed by Mario Carneiro, 9-Feb-2017.)

Theorempm3.2im 626 In classical logic, this is just a restatement of pm3.2 138. In intuitionistic logic, it still holds, but is weaker than pm3.2. (Contributed by Mario Carneiro, 12-May-2015.)

Theoremexpi 627 An exportation inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.)

Theorempm2.65i 628 Inference for proof by contradiction. (Contributed by NM, 18-May-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.)

Theoremmt2 629 A rule similar to modus tollens. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 10-Sep-2013.)

Theorembiijust 630 Theorem used to justify definition of intuitionistic biconditional df-bi 116. (Contributed by NM, 24-Nov-2017.)

Theoremcon3 631 Contraposition. Theorem *2.16 of [WhiteheadRussell] p. 103. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 13-Feb-2013.)

Theoremcon2 632 Contraposition. Theorem *2.03 of [WhiteheadRussell] p. 100. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Feb-2013.)

Theoremmt2i 633 Modus tollens inference. (Contributed by NM, 26-Mar-1995.) (Proof shortened by Wolf Lammen, 15-Sep-2012.)

Theoremnotnoti 634 Infer double negation. (Contributed by NM, 27-Feb-2008.)

Theorempm2.21i 635 A contradiction implies anything. Inference from pm2.21 606. (Contributed by NM, 16-Sep-1993.) (Revised by Mario Carneiro, 31-Jan-2015.)

Theorempm2.24ii 636 A contradiction implies anything. Inference from pm2.24 610. (Contributed by NM, 27-Feb-2008.)

Theoremnsyld 637 A negated syllogism deduction. (Contributed by NM, 9-Apr-2005.)

Theoremnsyli 638 A negated syllogism inference. (Contributed by NM, 3-May-1994.)

Theoremjc 639 Inference joining the consequents of two premises. (Contributed by NM, 5-Aug-1993.)

Theoremjcn 640 Theorem joining the consequents of two premises. Theorem 8 of [Margaris] p. 60. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.)

Theoremjcnd 641 Deduction joining the consequents of two premises. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by Wolf Lammen, 10-Apr-2024.)

Theoremconax1 642 Contrapositive of ax-1 6. (Contributed by BJ, 28-Oct-2023.)

Theoremconax1k 643 Weakening of conax1 642. General instance of pm2.51 644 and of pm2.52 645. (Contributed by BJ, 28-Oct-2023.)

Theorempm2.51 644 Theorem *2.51 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)

Theorempm2.52 645 Theorem *2.52 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) (Revised by Mario Carneiro, 31-Jan-2015.)

Theoremexpt 646 Exportation theorem pm3.3 259 (closed form of ex 114) expressed with primitive connectives. (Contributed by NM, 5-Aug-1993.)

Theoremjarl 647 Elimination of a nested antecedent. (Contributed by Wolf Lammen, 10-May-2013.)

Theorempm2.65 648 Theorem *2.65 of [WhiteheadRussell] p. 107. Proof by contradiction. Proofs, such as this one, which assume a proposition, here , derive a contradiction, and therefore conclude , are valid intuitionistically (and can be called "proof of negation", for example by Section 1.2 of [Bauer] p. 482). By contrast, proofs which assume , derive a contradiction, and conclude , such as condandc 866, are only valid for decidable propositions. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 8-Mar-2013.)

Theorempm2.65d 649 Deduction for proof by contradiction. (Contributed by NM, 26-Jun-1994.) (Proof shortened by Wolf Lammen, 26-May-2013.)

Theorempm2.65da 650 Deduction for proof by contradiction. (Contributed by NM, 12-Jun-2014.)

Theoremmto 651 The rule of modus tollens. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.)

Theoremmtod 652 Modus tollens deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.)

Theoremmtoi 653 Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.)

Theoremmtand 654 A modus tollens deduction. (Contributed by Jeff Hankins, 19-Aug-2009.)

Theoremnotbi 655 Equivalence property for negation. Closed form. (Contributed by BJ, 27-Jan-2020.)

Theoremnotbid 656 Equivalence property for negation. Deduction form. (Contributed by NM, 21-May-1994.) (Revised by Mario Carneiro, 31-Jan-2015.)

Theoremnotbii 657 Equivalence property for negation. Inference form. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.)

Theoremcon2b 658 Contraposition. Bidirectional version of con2 632. (Contributed by NM, 5-Aug-1993.)

Theoremmtbi 659 An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Oct-2012.)

Theoremmtbir 660 An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.)

Theoremmtbid 661 A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995.)

Theoremmtbird 662 A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 10-May-1994.)

Theoremmtbii 663 An inference from a biconditional, similar to modus tollens. (Contributed by NM, 27-Nov-1995.)

Theoremmtbiri 664 An inference from a biconditional, similar to modus tollens. (Contributed by NM, 24-Aug-1995.)

Theoremsylnib 665 A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.)

Theoremsylnibr 666 A mixed syllogism inference from an implication and a biconditional. Useful for substituting an consequent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.)

Theoremsylnbi 667 A mixed syllogism inference from a biconditional and an implication. Useful for substituting an antecedent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.)

Theoremsylnbir 668 A mixed syllogism inference from a biconditional and an implication. (Contributed by Wolf Lammen, 16-Dec-2013.)

Theoremxchnxbi 669 Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.)

Theoremxchnxbir 670 Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.)

Theoremxchbinx 671 Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.)

Theoremxchbinxr 672 Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.)

Theoremmt2bi 673 A false consequent falsifies an antecedent. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Nov-2012.)

Theoremmtt 674 Modus-tollens-like theorem. (Contributed by NM, 7-Apr-2001.) (Revised by Mario Carneiro, 31-Jan-2015.)

Theoremannimim 675 Express conjunction in terms of implication. One direction of Theorem *4.61 of [WhiteheadRussell] p. 120. The converse holds for decidable propositions, as can be seen at annimdc 921. (Contributed by Jim Kingdon, 24-Dec-2017.)

Theorempm4.65r 676 One direction of Theorem *4.65 of [WhiteheadRussell] p. 120. The converse holds in classical logic. (Contributed by Jim Kingdon, 28-Jul-2018.)

Theoremimanim 677 Express implication in terms of conjunction. The converse only holds given a decidability condition; see imandc 874. (Contributed by Jim Kingdon, 24-Dec-2017.)

Theorempm3.37 678 Theorem *3.37 (Transp) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.)

Theoremimnan 679 Express implication in terms of conjunction. (Contributed by NM, 9-Apr-1994.) (Revised by Mario Carneiro, 1-Feb-2015.)

Theoremimnani 680 Express implication in terms of conjunction. (Contributed by Mario Carneiro, 28-Sep-2015.)

Theoremnan 681 Theorem to move a conjunct in and out of a negation. (Contributed by NM, 9-Nov-2003.)

Theorempm3.24 682 Law of noncontradiction. Theorem *3.24 of [WhiteheadRussell] p. 111 (who call it the "law of contradiction"). (Contributed by NM, 16-Sep-1993.) (Revised by Mario Carneiro, 2-Feb-2015.)

Theorempm4.15 683 Theorem *4.15 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 18-Nov-2012.)

Theorempm5.21 684 Two propositions are equivalent if they are both false. Theorem *5.21 of [WhiteheadRussell] p. 124. (Contributed by NM, 21-May-1994.) (Revised by Mario Carneiro, 31-Jan-2015.)

Theorempm5.21im 685 Two propositions are equivalent if they are both false. Closed form of 2false 690. Equivalent to a bi2 129-like version of the xor-connective. (Contributed by Wolf Lammen, 13-May-2013.) (Revised by Mario Carneiro, 31-Jan-2015.)

Theoremnbn2 686 The negation of a wff is equivalent to the wff's equivalence to falsehood. (Contributed by Juha Arpiainen, 19-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2015.)

Theorembibif 687 Transfer negation via an equivalence. (Contributed by NM, 3-Oct-2007.) (Proof shortened by Wolf Lammen, 28-Jan-2013.)

Theoremnbn 688 The negation of a wff is equivalent to the wff's equivalence to falsehood. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 3-Oct-2013.)

Theoremnbn3 689 Transfer falsehood via equivalence. (Contributed by NM, 11-Sep-2006.)

Theorem2false 690 Two falsehoods are equivalent. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 31-Jan-2015.)

Theorem2falsed 691 Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.)

Theorempm5.21ni 692 Two propositions implying a false one are equivalent. (Contributed by NM, 16-Feb-1996.) (Proof shortened by Wolf Lammen, 19-May-2013.)

Theorempm5.21nii 693 Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) (Revised by Mario Carneiro, 31-Jan-2015.)

Theorempm5.21ndd 694 Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Revised by Mario Carneiro, 31-Jan-2015.)

Theorempm5.19 695 Theorem *5.19 of [WhiteheadRussell] p. 124. (Contributed by NM, 3-Jan-2005.) (Revised by Mario Carneiro, 31-Jan-2015.)

Theorempm4.8 696 Theorem *4.8 of [WhiteheadRussell] p. 122. This one holds for all propositions, but compare with pm4.81dc 893 which requires a decidability condition. (Contributed by NM, 3-Jan-2005.)

1.2.6  Logical disjunction

Syntaxwo 697 Extend wff definition to include disjunction ('or').

Axiomax-io 698 Definition of 'or'. One of the axioms of propositional logic. (Contributed by Mario Carneiro, 31-Jan-2015.) Use its alias jaob 699 instead. (New usage is discouraged.)

Theoremjaob 699 Disjunction of antecedents. Compare Theorem *4.77 of [WhiteheadRussell] p. 121. Alias of ax-io 698. (Contributed by NM, 30-May-1994.) (Revised by Mario Carneiro, 31-Jan-2015.)

Theoremolc 700 Introduction of a disjunct. Axiom *1.3 of [WhiteheadRussell] p. 96. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.)

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13316
 Copyright terms: Public domain < Previous  Next >