| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con3d | Unicode version | ||
| Description: A contraposition deduction. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| con3d.1 |
|
| Ref | Expression |
|---|---|
| con3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3d.1 |
. . 3
| |
| 2 | notnot 630 |
. . 3
| |
| 3 | 1, 2 | syl6 33 |
. 2
|
| 4 | 3 | con2d 625 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: con3rr3 634 con3dimp 636 con3 643 nsyld 649 nsyli 650 jcn 652 notbi 667 impidc 859 bijadc 883 pm2.13dc 886 xoranor 1388 mo2n 2073 necon3ad 2409 necon3bd 2410 nelcon3d 2473 ssneld 3186 sscon 3298 difrab 3438 exmid1stab 4242 eunex 4598 ndmfvg 5592 nnaord 6576 nnmord 6584 php5 6928 php5dom 6933 supmoti 7068 exmidomniim 7216 mkvprop 7233 enmkvlem 7236 prubl 7570 letr 8126 eqord1 8527 prodge0 8898 lt2msq 8930 nnge1 9030 nzadd 9395 irradd 9737 irrmul 9738 xrletr 9900 frec2uzf1od 10515 zesq 10767 expcanlem 10824 nn0opthd 10831 bccmpl 10863 maxleast 11395 fisumss 11574 dvdsbnd 12148 prm2orodd 12319 coprm 12337 prmndvdsfaclt 12349 hashgcdeq 12433 cos11 15173 bj-nnsn 15463 bj-nnelirr 15683 ismkvnnlem 15783 nconstwlpolem 15796 |
| Copyright terms: Public domain | W3C validator |