| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con3d | Unicode version | ||
| Description: A contraposition deduction. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| con3d.1 |
|
| Ref | Expression |
|---|---|
| con3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3d.1 |
. . 3
| |
| 2 | notnot 632 |
. . 3
| |
| 3 | 1, 2 | syl6 33 |
. 2
|
| 4 | 3 | con2d 627 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 617 ax-in2 618 |
| This theorem is referenced by: con3rr3 636 con3dimp 638 con3 645 nsyld 651 nsyli 652 jcn 655 notbi 670 impidc 863 bijadc 887 pm2.13dc 890 xoranor 1419 mo2n 2105 necon3ad 2442 necon3bd 2443 nelcon3d 2506 ssneld 3226 sscon 3338 difrab 3478 exmid1stab 4291 eunex 4652 ndmfvg 5657 nnaord 6653 nnmord 6661 php5 7015 php5dom 7020 supmoti 7156 exmidomniim 7304 mkvprop 7321 enmkvlem 7324 prubl 7669 letr 8225 eqord1 8626 prodge0 8997 lt2msq 9029 nnge1 9129 nzadd 9495 irradd 9837 irrmul 9838 xrletr 10000 frec2uzf1od 10623 zesq 10875 expcanlem 10932 nn0opthd 10939 bccmpl 10971 fundm2domnop0 11062 maxleast 11719 fisumss 11898 dvdsbnd 12472 prm2orodd 12643 coprm 12661 prmndvdsfaclt 12673 hashgcdeq 12757 cos11 15521 bj-nnsn 16055 bj-nnelirr 16274 ismkvnnlem 16379 nconstwlpolem 16392 |
| Copyright terms: Public domain | W3C validator |