| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con3d | Unicode version | ||
| Description: A contraposition deduction. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| con3d.1 |
|
| Ref | Expression |
|---|---|
| con3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3d.1 |
. . 3
| |
| 2 | notnot 630 |
. . 3
| |
| 3 | 1, 2 | syl6 33 |
. 2
|
| 4 | 3 | con2d 625 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: con3rr3 634 con3dimp 636 con3 643 nsyld 649 nsyli 650 jcn 652 notbi 667 impidc 859 bijadc 883 pm2.13dc 886 xoranor 1396 mo2n 2081 necon3ad 2417 necon3bd 2418 nelcon3d 2481 ssneld 3194 sscon 3306 difrab 3446 exmid1stab 4251 eunex 4608 ndmfvg 5606 nnaord 6594 nnmord 6602 php5 6954 php5dom 6959 supmoti 7094 exmidomniim 7242 mkvprop 7259 enmkvlem 7262 prubl 7598 letr 8154 eqord1 8555 prodge0 8926 lt2msq 8958 nnge1 9058 nzadd 9424 irradd 9766 irrmul 9767 xrletr 9929 frec2uzf1od 10549 zesq 10801 expcanlem 10858 nn0opthd 10865 bccmpl 10897 fundm2domnop0 10988 maxleast 11466 fisumss 11645 dvdsbnd 12219 prm2orodd 12390 coprm 12408 prmndvdsfaclt 12420 hashgcdeq 12504 cos11 15267 bj-nnsn 15602 bj-nnelirr 15822 ismkvnnlem 15924 nconstwlpolem 15937 |
| Copyright terms: Public domain | W3C validator |