| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con3d | Unicode version | ||
| Description: A contraposition deduction. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| con3d.1 |
|
| Ref | Expression |
|---|---|
| con3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3d.1 |
. . 3
| |
| 2 | notnot 630 |
. . 3
| |
| 3 | 1, 2 | syl6 33 |
. 2
|
| 4 | 3 | con2d 625 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: con3rr3 634 con3dimp 636 con3 643 nsyld 649 nsyli 650 jcn 653 notbi 668 impidc 860 bijadc 884 pm2.13dc 887 xoranor 1397 mo2n 2083 necon3ad 2419 necon3bd 2420 nelcon3d 2483 ssneld 3199 sscon 3311 difrab 3451 exmid1stab 4260 eunex 4617 ndmfvg 5620 nnaord 6608 nnmord 6616 php5 6970 php5dom 6975 supmoti 7110 exmidomniim 7258 mkvprop 7275 enmkvlem 7278 prubl 7619 letr 8175 eqord1 8576 prodge0 8947 lt2msq 8979 nnge1 9079 nzadd 9445 irradd 9787 irrmul 9788 xrletr 9950 frec2uzf1od 10573 zesq 10825 expcanlem 10882 nn0opthd 10889 bccmpl 10921 fundm2domnop0 11012 maxleast 11599 fisumss 11778 dvdsbnd 12352 prm2orodd 12523 coprm 12541 prmndvdsfaclt 12553 hashgcdeq 12637 cos11 15400 bj-nnsn 15808 bj-nnelirr 16027 ismkvnnlem 16132 nconstwlpolem 16145 |
| Copyright terms: Public domain | W3C validator |