| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > con3d | Unicode version | ||
| Description: A contraposition deduction. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 31-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| con3d.1 | 
 | 
| Ref | Expression | 
|---|---|
| con3d | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | con3d.1 | 
. . 3
 | |
| 2 | notnot 630 | 
. . 3
 | |
| 3 | 1, 2 | syl6 33 | 
. 2
 | 
| 4 | 3 | con2d 625 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 | 
| This theorem is referenced by: con3rr3 634 con3dimp 636 con3 643 nsyld 649 nsyli 650 jcn 652 notbi 667 impidc 859 bijadc 883 pm2.13dc 886 xoranor 1388 mo2n 2073 necon3ad 2409 necon3bd 2410 nelcon3d 2473 ssneld 3185 sscon 3297 difrab 3437 exmid1stab 4241 eunex 4597 ndmfvg 5589 nnaord 6567 nnmord 6575 php5 6919 php5dom 6924 supmoti 7059 exmidomniim 7207 mkvprop 7224 enmkvlem 7227 prubl 7553 letr 8109 eqord1 8510 prodge0 8881 lt2msq 8913 nnge1 9013 nzadd 9378 irradd 9720 irrmul 9721 xrletr 9883 frec2uzf1od 10498 zesq 10750 expcanlem 10807 nn0opthd 10814 bccmpl 10846 maxleast 11378 fisumss 11557 dvdsbnd 12123 prm2orodd 12294 coprm 12312 prmndvdsfaclt 12324 hashgcdeq 12408 cos11 15089 bj-nnsn 15379 bj-nnelirr 15599 ismkvnnlem 15696 nconstwlpolem 15709 | 
| Copyright terms: Public domain | W3C validator |