| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con3d | Unicode version | ||
| Description: A contraposition deduction. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| con3d.1 |
|
| Ref | Expression |
|---|---|
| con3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3d.1 |
. . 3
| |
| 2 | notnot 630 |
. . 3
| |
| 3 | 1, 2 | syl6 33 |
. 2
|
| 4 | 3 | con2d 625 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: con3rr3 634 con3dimp 636 con3 643 nsyld 649 nsyli 650 jcn 652 notbi 667 impidc 859 bijadc 883 pm2.13dc 886 xoranor 1396 mo2n 2081 necon3ad 2417 necon3bd 2418 nelcon3d 2481 ssneld 3194 sscon 3306 difrab 3446 exmid1stab 4251 eunex 4607 ndmfvg 5601 nnaord 6585 nnmord 6593 php5 6937 php5dom 6942 supmoti 7077 exmidomniim 7225 mkvprop 7242 enmkvlem 7245 prubl 7581 letr 8137 eqord1 8538 prodge0 8909 lt2msq 8941 nnge1 9041 nzadd 9407 irradd 9749 irrmul 9750 xrletr 9912 frec2uzf1od 10532 zesq 10784 expcanlem 10841 nn0opthd 10848 bccmpl 10880 maxleast 11443 fisumss 11622 dvdsbnd 12196 prm2orodd 12367 coprm 12385 prmndvdsfaclt 12397 hashgcdeq 12481 cos11 15243 bj-nnsn 15533 bj-nnelirr 15753 ismkvnnlem 15855 nconstwlpolem 15868 |
| Copyright terms: Public domain | W3C validator |