ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peircedc Unicode version

Theorem peircedc 900
Description: Peirce's theorem for a decidable proposition. This odd-looking theorem can be seen as an alternative to exmiddc 822, condc 839, or notnotrdc 829 in the sense of expressing the "difference" between an intuitionistic system of propositional calculus and a classical system. In intuitionistic logic, it only holds for decidable propositions. (Contributed by Jim Kingdon, 3-Jul-2018.)
Assertion
Ref Expression
peircedc  |-  (DECID  ph  ->  ( ( ( ph  ->  ps )  ->  ph )  ->  ph ) )

Proof of Theorem peircedc
StepHypRef Expression
1 df-dc 821 . 2  |-  (DECID  ph  <->  ( ph  \/  -.  ph ) )
2 ax-1 6 . . 3  |-  ( ph  ->  ( ( ( ph  ->  ps )  ->  ph )  ->  ph ) )
3 pm2.21 607 . . . . 5  |-  ( -. 
ph  ->  ( ph  ->  ps ) )
43imim1i 60 . . . 4  |-  ( ( ( ph  ->  ps )  ->  ph )  ->  ( -.  ph  ->  ph ) )
54com12 30 . . 3  |-  ( -. 
ph  ->  ( ( (
ph  ->  ps )  ->  ph )  ->  ph )
)
62, 5jaoi 706 . 2  |-  ( (
ph  \/  -.  ph )  ->  ( ( ( ph  ->  ps )  ->  ph )  ->  ph ) )
71, 6sylbi 120 1  |-  (DECID  ph  ->  ( ( ( ph  ->  ps )  ->  ph )  ->  ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 698  DECID wdc 820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-dc 821
This theorem is referenced by:  looinvdc  901  exmoeudc  2069
  Copyright terms: Public domain W3C validator