| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peircedc | GIF version | ||
| Description: Peirce's theorem for a decidable proposition. This odd-looking theorem can be seen as an alternative to exmiddc 841, condc 858, or notnotrdc 848 in the sense of expressing the "difference" between an intuitionistic system of propositional calculus and a classical system. In intuitionistic logic, it only holds for decidable propositions. (Contributed by Jim Kingdon, 3-Jul-2018.) |
| Ref | Expression |
|---|---|
| peircedc | ⊢ (DECID 𝜑 → (((𝜑 → 𝜓) → 𝜑) → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 840 | . 2 ⊢ (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) | |
| 2 | ax-1 6 | . . 3 ⊢ (𝜑 → (((𝜑 → 𝜓) → 𝜑) → 𝜑)) | |
| 3 | pm2.21 620 | . . . . 5 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 4 | 3 | imim1i 60 | . . . 4 ⊢ (((𝜑 → 𝜓) → 𝜑) → (¬ 𝜑 → 𝜑)) |
| 5 | 4 | com12 30 | . . 3 ⊢ (¬ 𝜑 → (((𝜑 → 𝜓) → 𝜑) → 𝜑)) |
| 6 | 2, 5 | jaoi 721 | . 2 ⊢ ((𝜑 ∨ ¬ 𝜑) → (((𝜑 → 𝜓) → 𝜑) → 𝜑)) |
| 7 | 1, 6 | sylbi 121 | 1 ⊢ (DECID 𝜑 → (((𝜑 → 𝜓) → 𝜑) → 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 713 DECID wdc 839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 618 ax-io 714 |
| This theorem depends on definitions: df-bi 117 df-dc 840 |
| This theorem is referenced by: looinvdc 920 exmoeudc 2141 |
| Copyright terms: Public domain | W3C validator |