ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.521gdc Unicode version

Theorem pm2.521gdc 868
Description: A general instance of Theorem *2.521 of [WhiteheadRussell] p. 107, under a decidability condition. (Contributed by BJ, 28-Oct-2023.)
Assertion
Ref Expression
pm2.521gdc  |-  (DECID  ph  ->  ( -.  ( ph  ->  ps )  ->  ( ch  ->  ph ) ) )

Proof of Theorem pm2.521gdc
StepHypRef Expression
1 pm2.5gdc 866 . 2  |-  (DECID  ph  ->  ( -.  ( ph  ->  ps )  ->  ( -.  ph 
->  -.  ch ) ) )
2 condc 853 . 2  |-  (DECID  ph  ->  ( ( -.  ph  ->  -. 
ch )  ->  ( ch  ->  ph ) ) )
31, 2syld 45 1  |-  (DECID  ph  ->  ( -.  ( ph  ->  ps )  ->  ( ch  ->  ph ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4  DECID wdc 834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835
This theorem is referenced by:  pm2.521dc  869
  Copyright terms: Public domain W3C validator