ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.5gdc Unicode version

Theorem pm2.5gdc 867
Description: Negating an implication for a decidable antecedent. General instance of Theorem *2.5 of [WhiteheadRussell] p. 107 under a decidability condition. (Contributed by Jim Kingdon, 29-Mar-2018.)
Assertion
Ref Expression
pm2.5gdc  |-  (DECID  ph  ->  ( -.  ( ph  ->  ps )  ->  ( -.  ph 
->  ch ) ) )

Proof of Theorem pm2.5gdc
StepHypRef Expression
1 simplimdc 861 . . . 4  |-  (DECID  ph  ->  ( -.  ( ph  ->  ps )  ->  ph ) )
21imp 124 . . 3  |-  ( (DECID  ph  /\ 
-.  ( ph  ->  ps ) )  ->  ph )
32pm2.24d 623 . 2  |-  ( (DECID  ph  /\ 
-.  ( ph  ->  ps ) )  ->  ( -.  ph  ->  ch )
)
43ex 115 1  |-  (DECID  ph  ->  ( -.  ( ph  ->  ps )  ->  ( -.  ph 
->  ch ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836
This theorem is referenced by:  pm2.5dc  868  pm2.521gdc  869
  Copyright terms: Public domain W3C validator