ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.5gdc Unicode version

Theorem pm2.5gdc 861
Description: Negating an implication for a decidable antecedent. General instance of Theorem *2.5 of [WhiteheadRussell] p. 107 under a decidability condition. (Contributed by Jim Kingdon, 29-Mar-2018.)
Assertion
Ref Expression
pm2.5gdc  |-  (DECID  ph  ->  ( -.  ( ph  ->  ps )  ->  ( -.  ph 
->  ch ) ) )

Proof of Theorem pm2.5gdc
StepHypRef Expression
1 simplimdc 855 . . . 4  |-  (DECID  ph  ->  ( -.  ( ph  ->  ps )  ->  ph ) )
21imp 123 . . 3  |-  ( (DECID  ph  /\ 
-.  ( ph  ->  ps ) )  ->  ph )
32pm2.24d 617 . 2  |-  ( (DECID  ph  /\ 
-.  ( ph  ->  ps ) )  ->  ( -.  ph  ->  ch )
)
43ex 114 1  |-  (DECID  ph  ->  ( -.  ( ph  ->  ps )  ->  ( -.  ph 
->  ch ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103  DECID wdc 829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830
This theorem is referenced by:  pm2.5dc  862  pm2.521gdc  863
  Copyright terms: Public domain W3C validator