ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.521gdc GIF version

Theorem pm2.521gdc 869
Description: A general instance of Theorem *2.521 of [WhiteheadRussell] p. 107, under a decidability condition. (Contributed by BJ, 28-Oct-2023.)
Assertion
Ref Expression
pm2.521gdc (DECID 𝜑 → (¬ (𝜑𝜓) → (𝜒𝜑)))

Proof of Theorem pm2.521gdc
StepHypRef Expression
1 pm2.5gdc 867 . 2 (DECID 𝜑 → (¬ (𝜑𝜓) → (¬ 𝜑 → ¬ 𝜒)))
2 condc 854 . 2 (DECID 𝜑 → ((¬ 𝜑 → ¬ 𝜒) → (𝜒𝜑)))
31, 2syld 45 1 (DECID 𝜑 → (¬ (𝜑𝜓) → (𝜒𝜑)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  DECID wdc 835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836
This theorem is referenced by:  pm2.521dc  870
  Copyright terms: Public domain W3C validator