Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm4.42r | GIF version |
Description: One direction of Theorem *4.42 of [WhiteheadRussell] p. 119. (Contributed by Jim Kingdon, 4-Aug-2018.) |
Ref | Expression |
---|---|
pm4.42r | ⊢ (((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ ¬ 𝜓)) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | simpl 108 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜑) | |
3 | 1, 2 | jaoi 706 | 1 ⊢ (((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ ¬ 𝜓)) → 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |