| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pm4.42r | GIF version | ||
| Description: One direction of Theorem *4.42 of [WhiteheadRussell] p. 119. (Contributed by Jim Kingdon, 4-Aug-2018.) | 
| Ref | Expression | 
|---|---|
| pm4.42r | ⊢ (((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ ¬ 𝜓)) → 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | simpl 109 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜑) | |
| 3 | 1, 2 | jaoi 717 | 1 ⊢ (((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ ¬ 𝜓)) → 𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |