ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.52im Unicode version

Theorem pm4.52im 750
Description: One direction of theorem *4.52 of [WhiteheadRussell] p. 120. The converse also holds in classical logic. (Contributed by Jim Kingdon, 27-Jul-2018.)
Assertion
Ref Expression
pm4.52im  |-  ( (
ph  /\  -.  ps )  ->  -.  ( -.  ph  \/  ps ) )

Proof of Theorem pm4.52im
StepHypRef Expression
1 annimim 686 . 2  |-  ( (
ph  /\  -.  ps )  ->  -.  ( ph  ->  ps ) )
2 imorr 721 . 2  |-  ( ( -.  ph  \/  ps )  ->  ( ph  ->  ps ) )
31, 2nsyl 628 1  |-  ( (
ph  /\  -.  ps )  ->  -.  ( -.  ph  \/  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm4.53r  751
  Copyright terms: Public domain W3C validator