ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.53r Unicode version

Theorem pm4.53r 752
Description: One direction of theorem *4.53 of [WhiteheadRussell] p. 120. The converse also holds in classical logic. (Contributed by Jim Kingdon, 27-Jul-2018.)
Assertion
Ref Expression
pm4.53r  |-  ( ( -.  ph  \/  ps )  ->  -.  ( ph  /\ 
-.  ps ) )

Proof of Theorem pm4.53r
StepHypRef Expression
1 pm4.52im 751 . 2  |-  ( (
ph  /\  -.  ps )  ->  -.  ( -.  ph  \/  ps ) )
21con2i 628 1  |-  ( ( -.  ph  \/  ps )  ->  -.  ( ph  /\ 
-.  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  undif3ss  3420
  Copyright terms: Public domain W3C validator