ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.52im GIF version

Theorem pm4.52im 745
Description: One direction of theorem *4.52 of [WhiteheadRussell] p. 120. The converse also holds in classical logic. (Contributed by Jim Kingdon, 27-Jul-2018.)
Assertion
Ref Expression
pm4.52im ((𝜑 ∧ ¬ 𝜓) → ¬ (¬ 𝜑𝜓))

Proof of Theorem pm4.52im
StepHypRef Expression
1 annimim 681 . 2 ((𝜑 ∧ ¬ 𝜓) → ¬ (𝜑𝜓))
2 imorr 716 . 2 ((¬ 𝜑𝜓) → (𝜑𝜓))
31, 2nsyl 623 1 ((𝜑 ∧ ¬ 𝜓) → ¬ (¬ 𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm4.53r  746
  Copyright terms: Public domain W3C validator