ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.52im GIF version

Theorem pm4.52im 740
Description: One direction of theorem *4.52 of [WhiteheadRussell] p. 120. The converse also holds in classical logic. (Contributed by Jim Kingdon, 27-Jul-2018.)
Assertion
Ref Expression
pm4.52im ((𝜑 ∧ ¬ 𝜓) → ¬ (¬ 𝜑𝜓))

Proof of Theorem pm4.52im
StepHypRef Expression
1 annimim 676 . 2 ((𝜑 ∧ ¬ 𝜓) → ¬ (𝜑𝜓))
2 imorr 711 . 2 ((¬ 𝜑𝜓) → (𝜑𝜓))
31, 2nsyl 618 1 ((𝜑 ∧ ¬ 𝜓) → ¬ (¬ 𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm4.53r  741
  Copyright terms: Public domain W3C validator