HomeHome Intuitionistic Logic Explorer
Theorem List (p. 8 of 129)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 701-800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorempm2.48 701 Theorem *2.48 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
 |-  ( -.  ( ph  \/  ps )  ->  ( ph  \/  -.  ps )
 )
 
Theorempm2.49 702 Theorem *2.49 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
 |-  ( -.  ( ph  \/  ps )  ->  ( -.  ph  \/  -.  ps ) )
 
Theorempm2.67 703 Theorem *2.67 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) (Revised by NM, 9-Dec-2012.)
 |-  ( ( ( ph  \/  ps )  ->  ps )  ->  ( ph  ->  ps )
 )
 
Theorembiorf 704 A wff is equivalent to its disjunction with falsehood. Theorem *4.74 of [WhiteheadRussell] p. 121. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2012.)
 |-  ( -.  ph  ->  ( ps  <->  ( ph  \/  ps ) ) )
 
Theorembiortn 705 A wff is equivalent to its negated disjunction with falsehood. (Contributed by NM, 9-Jul-2012.)
 |-  ( ph  ->  ( ps 
 <->  ( -.  ph  \/  ps ) ) )
 
Theorembiorfi 706 A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995.)
 |- 
 -.  ph   =>    |-  ( ps  <->  ( ps  \/  ph ) )
 
Theorempm2.621 707 Theorem *2.621 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) (Revised by NM, 13-Dec-2013.)
 |-  ( ( ph  ->  ps )  ->  ( ( ph  \/  ps )  ->  ps ) )
 
Theorempm2.62 708 Theorem *2.62 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 13-Dec-2013.)
 |-  ( ( ph  \/  ps )  ->  ( ( ph  ->  ps )  ->  ps )
 )
 
Theoremimorri 709 Infer implication from disjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by Mario Carneiro, 31-Jan-2015.)
 |-  ( -.  ph  \/  ps )   =>    |-  ( ph  ->  ps )
 
Theoremioran 710 Negated disjunction in terms of conjunction. This version of DeMorgan's law is a biconditional for all propositions (not just decidable ones), unlike oranim 851, anordc 908, or ianordc 843. Compare Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.)
 |-  ( -.  ( ph  \/  ps )  <->  ( -.  ph  /\ 
 -.  ps ) )
 
Theorempm3.14 711 Theorem *3.14 of [WhiteheadRussell] p. 111. One direction of De Morgan's law). The biconditional holds for decidable propositions as seen at ianordc 843. The converse holds for decidable propositions, as seen at pm3.13dc 911. (Contributed by NM, 3-Jan-2005.) (Revised by Mario Carneiro, 31-Jan-2015.)
 |-  ( ( -.  ph  \/  -.  ps )  ->  -.  ( ph  /\  ps ) )
 
Theorempm3.1 712 Theorem *3.1 of [WhiteheadRussell] p. 111. The converse holds for decidable propositions, as seen at anordc 908. (Contributed by NM, 3-Jan-2005.) (Revised by Mario Carneiro, 31-Jan-2015.)
 |-  ( ( ph  /\  ps )  ->  -.  ( -.  ph 
 \/  -.  ps )
 )
 
Theoremjao 713 Disjunction of antecedents. Compare Theorem *3.44 of [WhiteheadRussell] p. 113. (Contributed by NM, 5-Apr-1994.) (Proof shortened by Wolf Lammen, 4-Apr-2013.)
 |-  ( ( ph  ->  ps )  ->  ( ( ch  ->  ps )  ->  (
 ( ph  \/  ch )  ->  ps ) ) )
 
Theorempm1.2 714 Axiom *1.2 (Taut) of [WhiteheadRussell] p. 96. (Contributed by NM, 3-Jan-2005.) (Revised by NM, 10-Mar-2013.)
 |-  ( ( ph  \/  ph )  ->  ph )
 
Theoremoridm 715 Idempotent law for disjunction. Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 16-Apr-2011.) (Proof shortened by Wolf Lammen, 10-Mar-2013.)
 |-  ( ( ph  \/  ph )  <->  ph )
 
Theorempm4.25 716 Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.)
 |-  ( ph  <->  ( ph  \/  ph ) )
 
Theoremorim12i 717 Disjoin antecedents and consequents of two premises. (Contributed by NM, 6-Jun-1994.) (Proof shortened by Wolf Lammen, 25-Jul-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ch  ->  th )   =>    |-  ( ( ph  \/  ch )  ->  ( ps  \/  th ) )
 
Theoremorim1i 718 Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ph  \/  ch )  ->  ( ps  \/  ch ) )
 
Theoremorim2i 719 Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ch  \/  ph )  ->  ( ch  \/  ps ) )
 
Theoremorbi2i 720 Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.)
 |-  ( ph  <->  ps )   =>    |-  ( ( ch  \/  ph )  <->  ( ch  \/  ps ) )
 
Theoremorbi1i 721 Inference adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  <->  ps )   =>    |-  ( ( ph  \/  ch )  <->  ( ps  \/  ch ) )
 
Theoremorbi12i 722 Infer the disjunction of two equivalences. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  <->  ps )   &    |-  ( ch  <->  th )   =>    |-  ( ( ph  \/  ch )  <->  ( ps  \/  th ) )
 
Theorempm1.5 723 Axiom *1.5 (Assoc) of [WhiteheadRussell] p. 96. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ph  \/  ( ps  \/  ch )
 )  ->  ( ps  \/  ( ph  \/  ch ) ) )
 
Theoremor12 724 Swap two disjuncts. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 14-Nov-2012.)
 |-  ( ( ph  \/  ( ps  \/  ch )
 ) 
 <->  ( ps  \/  ( ph  \/  ch ) ) )
 
Theoremorass 725 Associative law for disjunction. Theorem *4.33 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ( ( ph  \/  ps )  \/  ch ) 
 <->  ( ph  \/  ( ps  \/  ch ) ) )
 
Theorempm2.31 726 Theorem *2.31 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ph  \/  ( ps  \/  ch )
 )  ->  ( ( ph  \/  ps )  \/ 
 ch ) )
 
Theorempm2.32 727 Theorem *2.32 of [WhiteheadRussell] p. 105. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ( ph  \/  ps )  \/  ch )  ->  ( ph  \/  ( ps  \/  ch )
 ) )
 
Theoremor32 728 A rearrangement of disjuncts. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ( ( ph  \/  ps )  \/  ch ) 
 <->  ( ( ph  \/  ch )  \/  ps )
 )
 
Theoremor4 729 Rearrangement of 4 disjuncts. (Contributed by NM, 12-Aug-1994.)
 |-  ( ( ( ph  \/  ps )  \/  ( ch  \/  th ) )  <-> 
 ( ( ph  \/  ch )  \/  ( ps 
 \/  th ) ) )
 
Theoremor42 730 Rearrangement of 4 disjuncts. (Contributed by NM, 10-Jan-2005.)
 |-  ( ( ( ph  \/  ps )  \/  ( ch  \/  th ) )  <-> 
 ( ( ph  \/  ch )  \/  ( th  \/  ps ) ) )
 
Theoremorordi 731 Distribution of disjunction over disjunction. (Contributed by NM, 25-Feb-1995.)
 |-  ( ( ph  \/  ( ps  \/  ch )
 ) 
 <->  ( ( ph  \/  ps )  \/  ( ph  \/  ch ) ) )
 
Theoremorordir 732 Distribution of disjunction over disjunction. (Contributed by NM, 25-Feb-1995.)
 |-  ( ( ( ph  \/  ps )  \/  ch ) 
 <->  ( ( ph  \/  ch )  \/  ( ps 
 \/  ch ) ) )
 
Theorempm2.3 733 Theorem *2.3 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ph  \/  ( ps  \/  ch )
 )  ->  ( ph  \/  ( ch  \/  ps ) ) )
 
Theorempm2.41 734 Theorem *2.41 of [WhiteheadRussell] p. 106. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ps  \/  ( ph  \/  ps )
 )  ->  ( ph  \/  ps ) )
 
Theorempm2.42 735 Theorem *2.42 of [WhiteheadRussell] p. 106. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( -.  ph  \/  ( ph  ->  ps )
 )  ->  ( ph  ->  ps ) )
 
Theorempm2.4 736 Theorem *2.4 of [WhiteheadRussell] p. 106. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ph  \/  ( ph  \/  ps )
 )  ->  ( ph  \/  ps ) )
 
Theorempm4.44 737 Theorem *4.44 of [WhiteheadRussell] p. 119. (Contributed by NM, 3-Jan-2005.)
 |-  ( ph  <->  ( ph  \/  ( ph  /\  ps )
 ) )
 
Theoremmtord 738 A modus tollens deduction involving disjunction. (Contributed by Jeff Hankins, 15-Jul-2009.) (Revised by Mario Carneiro, 31-Jan-2015.)
 |-  ( ph  ->  -.  ch )   &    |-  ( ph  ->  -.  th )   &    |-  ( ph  ->  ( ps  ->  ( ch  \/  th ) ) )   =>    |-  ( ph  ->  -. 
 ps )
 
Theorempm4.45 739 Theorem *4.45 of [WhiteheadRussell] p. 119. (Contributed by NM, 3-Jan-2005.)
 |-  ( ph  <->  ( ph  /\  ( ph  \/  ps ) ) )
 
Theorempm3.48 740 Theorem *3.48 of [WhiteheadRussell] p. 114. (Contributed by NM, 28-Jan-1997.) (Revised by NM, 1-Dec-2012.)
 |-  ( ( ( ph  ->  ps )  /\  ( ch  ->  th ) )  ->  ( ( ph  \/  ch )  ->  ( ps  \/  th ) ) )
 
Theoremorim12d 741 Disjoin antecedents and consequents in a deduction. (Contributed by NM, 10-May-1994.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( ph  ->  ( th  ->  ta ) )   =>    |-  ( ph  ->  (
 ( ps  \/  th )  ->  ( ch  \/  ta ) ) )
 
Theoremorim1d 742 Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  ( ( ps  \/  th )  ->  ( ch  \/  th ) ) )
 
Theoremorim2d 743 Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  ( ( th  \/  ps )  ->  ( th  \/  ch ) ) )
 
Theoremorim2 744 Axiom *1.6 (Sum) of [WhiteheadRussell] p. 97. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ps  ->  ch )  ->  ( ( ph  \/  ps )  ->  ( ph  \/  ch )
 ) )
 
Theoremorbi2d 745 Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( ( th  \/  ps ) 
 <->  ( th  \/  ch ) ) )
 
Theoremorbi1d 746 Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( ( ps  \/  th ) 
 <->  ( ch  \/  th ) ) )
 
Theoremorbi1 747 Theorem *4.37 of [WhiteheadRussell] p. 118. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ph  <->  ps )  ->  (
 ( ph  \/  ch )  <->  ( ps  \/  ch )
 ) )
 
Theoremorbi12d 748 Deduction joining two equivalences to form equivalence of disjunctions. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  ( th  <->  ta ) )   =>    |-  ( ph  ->  ( ( ps  \/  th ) 
 <->  ( ch  \/  ta ) ) )
 
Theorempm5.61 749 Theorem *5.61 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 30-Jun-2013.)
 |-  ( ( ( ph  \/  ps )  /\  -.  ps )  <->  ( ph  /\  -.  ps ) )
 
Theoremjaoian 750 Inference disjoining the antecedents of two implications. (Contributed by NM, 23-Oct-2005.)
 |-  ( ( ph  /\  ps )  ->  ch )   &    |-  ( ( th  /\ 
 ps )  ->  ch )   =>    |-  (
 ( ( ph  \/  th )  /\  ps )  ->  ch )
 
Theoremjao1i 751 Add a disjunct in the antecedent of an implication. (Contributed by Rodolfo Medina, 24-Sep-2010.)
 |-  ( ps  ->  ( ch  ->  ph ) )   =>    |-  ( ( ph  \/  ps )  ->  ( ch  ->  ph ) )
 
Theoremjaodan 752 Deduction disjoining the antecedents of two implications. (Contributed by NM, 14-Oct-2005.)
 |-  ( ( ph  /\  ps )  ->  ch )   &    |-  ( ( ph  /\ 
 th )  ->  ch )   =>    |-  (
 ( ph  /\  ( ps 
 \/  th ) )  ->  ch )
 
Theoremmpjaodan 753 Eliminate a disjunction in a deduction. A translation of natural deduction rule  \/ E ( \/ elimination). (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ( ph  /\  ps )  ->  ch )   &    |-  ( ( ph  /\ 
 th )  ->  ch )   &    |-  ( ph  ->  ( ps  \/  th ) )   =>    |-  ( ph  ->  ch )
 
Theorempm4.77 754 Theorem *4.77 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ( ps 
 ->  ph )  /\  ( ch  ->  ph ) )  <->  ( ( ps 
 \/  ch )  ->  ph )
 )
 
Theorempm2.63 755 Theorem *2.63 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ph  \/  ps )  ->  ( ( -.  ph  \/  ps )  ->  ps ) )
 
Theorempm2.64 756 Theorem *2.64 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ph  \/  ps )  ->  ( ( ph  \/  -.  ps )  -> 
 ph ) )
 
Theorempm5.53 757 Theorem *5.53 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ( (
 ph  \/  ps )  \/  ch )  ->  th )  <->  ( ( ( ph  ->  th )  /\  ( ps 
 ->  th ) )  /\  ( ch  ->  th )
 ) )
 
Theorempm2.38 758 Theorem *2.38 of [WhiteheadRussell] p. 105. (Contributed by NM, 6-Mar-2008.)
 |-  ( ( ps  ->  ch )  ->  ( ( ps  \/  ph )  ->  ( ch  \/  ph ) ) )
 
Theorempm2.36 759 Theorem *2.36 of [WhiteheadRussell] p. 105. (Contributed by NM, 6-Mar-2008.)
 |-  ( ( ps  ->  ch )  ->  ( ( ph  \/  ps )  ->  ( ch  \/  ph )
 ) )
 
Theorempm2.37 760 Theorem *2.37 of [WhiteheadRussell] p. 105. (Contributed by NM, 6-Mar-2008.)
 |-  ( ( ps  ->  ch )  ->  ( ( ps  \/  ph )  ->  ( ph  \/  ch ) ) )
 
Theorempm2.73 761 Theorem *2.73 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ph  ->  ps )  ->  ( (
 ( ph  \/  ps )  \/  ch )  ->  ( ps  \/  ch ) ) )
 
Theorempm2.74 762 Theorem *2.74 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2015.)
 |-  ( ( ps  ->  ph )  ->  ( (
 ( ph  \/  ps )  \/  ch )  ->  ( ph  \/  ch ) ) )
 
Theorempm2.76 763 Theorem *2.76 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.) (Revised by Mario Carneiro, 31-Jan-2015.)
 |-  ( ( ph  \/  ( ps  ->  ch )
 )  ->  ( ( ph  \/  ps )  ->  ( ph  \/  ch )
 ) )
 
Theorempm2.75 764 Theorem *2.75 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 4-Jan-2013.)
 |-  ( ( ph  \/  ps )  ->  ( ( ph  \/  ( ps  ->  ch ) )  ->  ( ph  \/  ch ) ) )
 
Theorempm2.8 765 Theorem *2.8 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2015.)
 |-  ( ( ph  \/  ps )  ->  ( ( -.  ps  \/  ch )  ->  ( ph  \/  ch ) ) )
 
Theorempm2.81 766 Theorem *2.81 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ps  ->  ( ch  ->  th )
 )  ->  ( ( ph  \/  ps )  ->  ( ( ph  \/  ch )  ->  ( ph  \/  th ) ) ) )
 
Theorempm2.82 767 Theorem *2.82 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ( ph  \/  ps )  \/  ch )  ->  ( ( (
 ph  \/  -.  ch )  \/  th )  ->  (
 ( ph  \/  ps )  \/  th ) ) )
 
Theorempm3.2ni 768 Infer negated disjunction of negated premises. (Contributed by NM, 4-Apr-1995.)
 |- 
 -.  ph   &    |-  -.  ps   =>    |-  -.  ( ph  \/  ps )
 
Theoremorabs 769 Absorption of redundant internal disjunct. Compare Theorem *4.45 of [WhiteheadRussell] p. 119. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 28-Feb-2014.)
 |-  ( ph  <->  ( ( ph  \/  ps )  /\  ph )
 )
 
Theoremoranabs 770 Absorb a disjunct into a conjunct. (Contributed by Roy F. Longton, 23-Jun-2005.) (Proof shortened by Wolf Lammen, 10-Nov-2013.)
 |-  ( ( ( ph  \/  -.  ps )  /\  ps )  <->  ( ph  /\  ps ) )
 
Theoremordi 771 Distributive law for disjunction. Theorem *4.41 of [WhiteheadRussell] p. 119. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.)
 |-  ( ( ph  \/  ( ps  /\  ch )
 ) 
 <->  ( ( ph  \/  ps )  /\  ( ph  \/  ch ) ) )
 
Theoremordir 772 Distributive law for disjunction. (Contributed by NM, 12-Aug-1994.)
 |-  ( ( ( ph  /\ 
 ps )  \/  ch ) 
 <->  ( ( ph  \/  ch )  /\  ( ps 
 \/  ch ) ) )
 
Theoremandi 773 Distributive law for conjunction. Theorem *4.4 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 5-Jan-2013.)
 |-  ( ( ph  /\  ( ps  \/  ch ) )  <-> 
 ( ( ph  /\  ps )  \/  ( ph  /\  ch ) ) )
 
Theoremandir 774 Distributive law for conjunction. (Contributed by NM, 12-Aug-1994.)
 |-  ( ( ( ph  \/  ps )  /\  ch ) 
 <->  ( ( ph  /\  ch )  \/  ( ps  /\  ch ) ) )
 
Theoremorddi 775 Double distributive law for disjunction. (Contributed by NM, 12-Aug-1994.)
 |-  ( ( ( ph  /\ 
 ps )  \/  ( ch  /\  th ) )  <-> 
 ( ( ( ph  \/  ch )  /\  ( ph  \/  th ) ) 
 /\  ( ( ps 
 \/  ch )  /\  ( ps  \/  th ) ) ) )
 
Theoremanddi 776 Double distributive law for conjunction. (Contributed by NM, 12-Aug-1994.)
 |-  ( ( ( ph  \/  ps )  /\  ( ch  \/  th ) )  <-> 
 ( ( ( ph  /\ 
 ch )  \/  ( ph  /\  th ) )  \/  ( ( ps 
 /\  ch )  \/  ( ps  /\  th ) ) ) )
 
Theorempm4.39 777 Theorem *4.39 of [WhiteheadRussell] p. 118. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ( ph  <->  ch )  /\  ( ps  <->  th ) )  ->  ( ( ph  \/  ps )  <->  ( ch  \/  th ) ) )
 
Theorempm4.72 778 Implication in terms of biconditional and disjunction. Theorem *4.72 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Wolf Lammen, 30-Jan-2013.)
 |-  ( ( ph  ->  ps )  <->  ( ps  <->  ( ph  \/  ps ) ) )
 
Theorempm5.16 779 Theorem *5.16 of [WhiteheadRussell] p. 124. (Contributed by NM, 3-Jan-2005.) (Revised by Mario Carneiro, 31-Jan-2015.)
 |- 
 -.  ( ( ph  <->  ps )  /\  ( ph  <->  -.  ps ) )
 
Theorembiort 780 A wff is disjoined with truth is true. (Contributed by NM, 23-May-1999.)
 |-  ( ph  ->  ( ph 
 <->  ( ph  \/  ps ) ) )
 
1.2.7  Stable propositions
 
Syntaxwstab 781 Extend wff definition to include stability.
 wff STAB  ph
 
Definitiondf-stab 782 Propositions where a double-negative can be removed are called stable. See Chapter 2 [Moschovakis] p. 2.

Our notation for stability is a connective STAB which we place before the formula in question. For example, STAB  x  =  y corresponds to "x = y is stable".

(Contributed by David A. Wheeler, 13-Aug-2018.)

 |-  (STAB 
 ph 
 <->  ( -.  -.  ph  -> 
 ph ) )
 
Theoremstbid 783 The equivalent of a stable proposition is stable. (Contributed by Jim Kingdon, 12-Aug-2022.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (STAB  ps  <-> STAB  ch )
 )
 
Theoremstabnot 784 Every formula of the form  -.  ph is stable. Uses notnotnot 669. (Contributed by David A. Wheeler, 13-Aug-2018.)
 |- STAB  -.  ph
 
Theoremimanst 785 Express implication in terms of conjunction. Theorem 3.4(27) of [Stoll] p. 176. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 30-Oct-2012.)
 |-  (STAB  ps  ->  ( ( ph  ->  ps )  <->  -.  ( ph  /\  -.  ps ) ) )
 
1.2.8  Decidable propositions
 
Syntaxwdc 786 Extend wff definition to include decidability.
 wff DECID  ph
 
Definitiondf-dc 787 Propositions which are known to be true or false are called decidable. The (classical) Law of the Excluded Middle corresponds to the principle that all propositions are decidable, but even given intuitionistic logic, particular kinds of propositions may be decidable (for example, the proposition that two natural numbers are equal will be decidable under most sets of axioms).

Our notation for decidability is a connective DECID which we place before the formula in question. For example, DECID  x  =  y corresponds to "x = y is decidable".

We could transform intuitionistic logic to classical logic by adding unconditional forms of condc 793, exmiddc 788, peircedc 864, or notnotrdc 795, any of which would correspond to the assertion that all propositions are decidable.

(Contributed by Jim Kingdon, 11-Mar-2018.)

 |-  (DECID 
 ph 
 <->  ( ph  \/  -.  ph ) )
 
Theoremexmiddc 788 Law of excluded middle, for a decidable proposition. The law of the excluded middle is also called the principle of tertium non datur. Theorem *2.11 of [WhiteheadRussell] p. 101. It says that something is either true or not true; there are no in-between values of truth. The key way in which intuitionistic logic differs from classical logic is that intuitionistic logic says that excluded middle only holds for some propositions, and classical logic says that it holds for all propositions. (Contributed by Jim Kingdon, 12-May-2018.)
 |-  (DECID 
 ph  ->  ( ph  \/  -.  ph ) )
 
Theorempm2.1dc 789 Commuted law of the excluded middle for a decidable proposition. Based on theorem *2.1 of [WhiteheadRussell] p. 101. (Contributed by Jim Kingdon, 25-Mar-2018.)
 |-  (DECID 
 ph  ->  ( -.  ph  \/  ph ) )
 
Theoremdcn 790 A decidable proposition is decidable when negated. (Contributed by Jim Kingdon, 25-Mar-2018.)
 |-  (DECID 
 ph  -> DECID  -.  ph )
 
Theoremdcbii 791 The equivalent of a decidable proposition is decidable. (Contributed by Jim Kingdon, 28-Mar-2018.)
 |-  ( ph  <->  ps )   =>    |-  (DECID 
 ph 
 <-> DECID  ps )
 
Theoremdcbid 792 The equivalent of a decidable proposition is decidable. (Contributed by Jim Kingdon, 7-Sep-2019.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (DECID  ps  <-> DECID  ch )
 )
 
1.2.9  Theorems of decidable propositions

Many theorems of logic hold in intuitionistic logic just as they do in classical (non-inuitionistic) logic, for all propositions. Other theorems only hold for decidable propositions, such as the law of the excluded middle (df-dc 787), double negation elimination (notnotrdc 795), or contraposition (condc 793). Our goal is to prove all well-known or important classical theorems, but with suitable decidability conditions so that the proofs follow from intuitionistic axioms. This section is focused on such proofs, given decidability conditions.

 
Theoremcondc 793 Contraposition of a decidable proposition.

This theorem swaps or "transposes" the order of the consequents when negation is removed. An informal example is that the statement "if there are no clouds in the sky, it is not raining" implies the statement "if it is raining, there are clouds in the sky." This theorem (without the decidability condition, of course) is called Transp or "the principle of transposition" in Principia Mathematica (Theorem *2.17 of [WhiteheadRussell] p. 103) and is Axiom A3 of [Margaris] p. 49. We will also use the term "contraposition" for this principle, although the reader is advised that in the field of philosophical logic, "contraposition" has a different technical meaning.

(Contributed by Jim Kingdon, 13-Mar-2018.)

 |-  (DECID 
 ph  ->  ( ( -.  ph  ->  -.  ps )  ->  ( ps  ->  ph )
 ) )
 
Theorempm2.18dc 794 Proof by contradiction for a decidable proposition. Based on Theorem *2.18 of [WhiteheadRussell] p. 103 (also called the Law of Clavius). Intuitionistically it requires a decidability assumption, but compare with pm2.01 586 which does not. (Contributed by Jim Kingdon, 24-Mar-2018.)
 |-  (DECID 
 ph  ->  ( ( -.  ph  ->  ph )  ->  ph )
 )
 
Theoremnotnotrdc 795 Double negation elimination for a decidable proposition. The converse, notnot 599, holds for all propositions, not just decidable ones. This is Theorem *2.14 of [WhiteheadRussell] p. 102, but with a decidability condition added. (Contributed by Jim Kingdon, 11-Mar-2018.)
 |-  (DECID 
 ph  ->  ( -.  -.  ph 
 ->  ph ) )
 
Theoremdcimpstab 796 Decidability implies stability. The converse is not necessarily true. (Contributed by David A. Wheeler, 13-Aug-2018.)
 |-  (DECID 
 ph  -> STAB  ph )
 
Theoremcon1dc 797 Contraposition for a decidable proposition. Based on theorem *2.15 of [WhiteheadRussell] p. 102. (Contributed by Jim Kingdon, 29-Mar-2018.)
 |-  (DECID 
 ph  ->  ( ( -.  ph  ->  ps )  ->  ( -.  ps  ->  ph ) ) )
 
Theoremcon4biddc 798 A contraposition deduction. (Contributed by Jim Kingdon, 18-May-2018.)
 |-  ( ph  ->  (DECID  ps  ->  (DECID 
 ch  ->  ( -.  ps  <->  -.  ch ) ) ) )   =>    |-  ( ph  ->  (DECID  ps  ->  (DECID  ch 
 ->  ( ps  <->  ch ) ) ) )
 
Theoremimpidc 799 An importation inference for a decidable consequent. (Contributed by Jim Kingdon, 30-Apr-2018.)
 |-  (DECID 
 ch  ->  ( ph  ->  ( ps  ->  ch )
 ) )   =>    |-  (DECID 
 ch  ->  ( -.  ( ph  ->  -.  ps )  ->  ch ) )
 
Theoremsimprimdc 800 Simplification given a decidable proposition. Similar to Theorem *3.27 (Simp) of [WhiteheadRussell] p. 112. (Contributed by Jim Kingdon, 30-Apr-2018.)
 |-  (DECID 
 ps  ->  ( -.  ( ph  ->  -.  ps )  ->  ps ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12832
  Copyright terms: Public domain < Previous  Next >