ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.81dc Unicode version

Theorem pm4.81dc 908
Description: Theorem *4.81 of [WhiteheadRussell] p. 122, for decidable propositions. This one needs a decidability condition, but compare with pm4.8 707 which holds for all propositions. (Contributed by Jim Kingdon, 4-Jul-2018.)
Assertion
Ref Expression
pm4.81dc  |-  (DECID  ph  ->  ( ( -.  ph  ->  ph )  <->  ph ) )

Proof of Theorem pm4.81dc
StepHypRef Expression
1 pm2.18dc 855 . 2  |-  (DECID  ph  ->  ( ( -.  ph  ->  ph )  ->  ph ) )
2 pm2.24 621 . 2  |-  ( ph  ->  ( -.  ph  ->  ph ) )
31, 2impbid1 142 1  |-  (DECID  ph  ->  ( ( -.  ph  ->  ph )  <->  ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105  DECID wdc 834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator