ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.81dc Unicode version

Theorem pm4.81dc 903
Description: Theorem *4.81 of [WhiteheadRussell] p. 122, for decidable propositions. This one needs a decidability condition, but compare with pm4.8 702 which holds for all propositions. (Contributed by Jim Kingdon, 4-Jul-2018.)
Assertion
Ref Expression
pm4.81dc  |-  (DECID  ph  ->  ( ( -.  ph  ->  ph )  <->  ph ) )

Proof of Theorem pm4.81dc
StepHypRef Expression
1 pm2.18dc 850 . 2  |-  (DECID  ph  ->  ( ( -.  ph  ->  ph )  ->  ph ) )
2 pm2.24 616 . 2  |-  ( ph  ->  ( -.  ph  ->  ph ) )
31, 2impbid1 141 1  |-  (DECID  ph  ->  ( ( -.  ph  ->  ph )  <->  ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104  DECID wdc 829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator