![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > impbid1 | Unicode version |
Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) |
Ref | Expression |
---|---|
impbid1.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
impbid1.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
impbid1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbid1.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | impbid1.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | impbid 129 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: impbid2 143 iba 300 ibar 301 pm4.81dc 908 pm5.63dc 946 pm4.83dc 951 pm5.71dc 961 19.33b2 1629 19.9t 1642 sb4b 1834 a16gb 1865 euor2 2084 eupickbi 2108 ceqsalg 2766 eqvincg 2862 ddifstab 3268 csbprc 3469 undif4 3486 eqifdc 3570 sssnm 3755 sneqbg 3764 opthpr 3773 elpwuni 3977 ss1o0el1 4198 exmid01 4199 exmidundif 4207 eusv2i 4456 reusv3 4461 iunpw 4481 suc11g 4557 ssxpbm 5065 ssxp1 5066 ssxp2 5067 xp11m 5068 2elresin 5328 mpteqb 5607 f1fveq 5773 f1elima 5774 f1imass 5775 fliftf 5800 nnsucuniel 6496 iserd 6561 ecopovtrn 6632 ecopover 6633 ecopovtrng 6635 ecopoverg 6636 map0g 6688 fopwdom 6836 f1finf1o 6946 mkvprop 7156 addcanpig 7333 mulcanpig 7334 srpospr 7782 readdcan 8097 cnegexlem1 8132 addcan 8137 addcan2 8138 neg11 8208 negreb 8222 add20 8431 cru 8559 mulcanapd 8618 uz11 9550 eqreznegel 9614 lbzbi 9616 xneg11 9834 xnn0xadd0 9867 xsubge0 9881 elioc2 9936 elico2 9937 elicc2 9938 fzopth 10061 2ffzeq 10141 flqidz 10286 addmodlteq 10398 frec2uzrand 10405 expcan 10696 nn0opthd 10702 fz1eqb 10770 cj11 10914 sqrt0 11013 recan 11118 0dvds 11818 dvds1 11859 alzdvds 11860 nn0enne 11907 nn0oddm1d2 11914 nnoddm1d2 11915 divalgmod 11932 gcdeq0 11978 algcvgblem 12049 prmexpb 12151 ennnfonelemim 12425 grprcan 12910 grplcan 12932 grpinv11 12939 tgdom 13575 en1top 13580 hmeocnvb 13821 metrest 14009 lgsne0 14442 2lgsoddprmlem3 14462 bj-nnbist 14499 bj-nnbidc 14512 bj-peano4 14710 bj-nn0sucALT 14733 |
Copyright terms: Public domain | W3C validator |