| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbid1 | Unicode version | ||
| Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) |
| Ref | Expression |
|---|---|
| impbid1.1 |
|
| impbid1.2 |
|
| Ref | Expression |
|---|---|
| impbid1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbid1.1 |
. 2
| |
| 2 | impbid1.2 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1, 3 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: impbid2 143 iba 300 ibar 301 pm4.81dc 910 pm5.63dc 949 pm4.83dc 954 pm5.71dc 964 19.33b2 1652 19.9t 1665 sb4b 1857 a16gb 1888 euor2 2112 eupickbi 2136 ceqsalg 2800 eqvincg 2897 ddifstab 3305 csbprc 3506 undif4 3523 eqifdc 3607 ifnebibdc 3615 sssnm 3795 sneqbg 3804 opthpr 3813 elpwuni 4017 ss1o0el1 4242 exmid01 4243 exmidundif 4251 eusv2i 4503 reusv3 4508 iunpw 4528 suc11g 4606 ssxpbm 5119 ssxp1 5120 ssxp2 5121 xp11m 5122 2elresin 5388 mpteqb 5672 f1fveq 5843 f1elima 5844 f1imass 5845 fliftf 5870 nnsucuniel 6583 iserd 6648 ecopovtrn 6721 ecopover 6722 ecopovtrng 6724 ecopoverg 6725 map0g 6777 fopwdom 6935 f1finf1o 7051 mkvprop 7262 addcanpig 7449 mulcanpig 7450 srpospr 7898 readdcan 8214 cnegexlem1 8249 addcan 8254 addcan2 8255 neg11 8325 negreb 8339 add20 8549 cru 8677 mulcanapd 8736 uz11 9673 eqreznegel 9737 lbzbi 9739 xneg11 9958 xnn0xadd0 9991 xsubge0 10005 elioc2 10060 elico2 10061 elicc2 10062 fzopth 10185 2ffzeq 10265 flqidz 10431 addmodlteq 10545 frec2uzrand 10552 nninfinf 10590 expcan 10863 nn0opthd 10869 fz1eqb 10937 wrdnval 11026 eqwrd 11036 wrdl1s1 11087 cj11 11249 sqrt0 11348 recan 11453 0dvds 12155 dvds1 12197 alzdvds 12198 nn0enne 12246 nn0oddm1d2 12253 nnoddm1d2 12254 divalgmod 12271 gcdeq0 12331 algcvgblem 12404 prmexpb 12506 4sqexercise2 12755 4sqlemsdc 12756 4sqlem11 12757 ennnfonelemim 12828 grprcan 13402 grplcan 13427 grpinv11 13434 isnzr2 13979 znidomb 14453 tgdom 14577 en1top 14582 hmeocnvb 14823 metrest 15011 perfect 15506 lgsne0 15548 2lgs 15614 2lgsoddprmlem3 15621 bj-nnbist 15717 bj-nnbidc 15730 bj-peano4 15928 bj-nn0sucALT 15951 |
| Copyright terms: Public domain | W3C validator |