Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > impbid1 | Unicode version |
Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) |
Ref | Expression |
---|---|
impbid1.1 | |
impbid1.2 |
Ref | Expression |
---|---|
impbid1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbid1.1 | . 2 | |
2 | impbid1.2 | . . 3 | |
3 | 2 | a1i 9 | . 2 |
4 | 1, 3 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: impbid2 142 iba 298 ibar 299 pm4.81dc 903 pm5.63dc 941 pm4.83dc 946 pm5.71dc 956 19.33b2 1622 19.9t 1635 sb4b 1827 a16gb 1858 euor2 2077 eupickbi 2101 ceqsalg 2758 eqvincg 2854 ddifstab 3259 csbprc 3460 undif4 3477 eqifdc 3560 sssnm 3741 sneqbg 3750 opthpr 3759 elpwuni 3962 ss1o0el1 4183 exmid01 4184 exmidundif 4192 eusv2i 4440 reusv3 4445 iunpw 4465 suc11g 4541 ssxpbm 5046 ssxp1 5047 ssxp2 5048 xp11m 5049 2elresin 5309 mpteqb 5586 f1fveq 5751 f1elima 5752 f1imass 5753 fliftf 5778 nnsucuniel 6474 iserd 6539 ecopovtrn 6610 ecopover 6611 ecopovtrng 6613 ecopoverg 6614 map0g 6666 fopwdom 6814 f1finf1o 6924 mkvprop 7134 addcanpig 7296 mulcanpig 7297 srpospr 7745 readdcan 8059 cnegexlem1 8094 addcan 8099 addcan2 8100 neg11 8170 negreb 8184 add20 8393 cru 8521 mulcanapd 8579 uz11 9509 eqreznegel 9573 lbzbi 9575 xneg11 9791 xnn0xadd0 9824 xsubge0 9838 elioc2 9893 elico2 9894 elicc2 9895 fzopth 10017 2ffzeq 10097 flqidz 10242 addmodlteq 10354 frec2uzrand 10361 expcan 10650 nn0opthd 10656 fz1eqb 10725 cj11 10869 sqrt0 10968 recan 11073 0dvds 11773 dvds1 11813 alzdvds 11814 nn0enne 11861 nn0oddm1d2 11868 nnoddm1d2 11869 divalgmod 11886 gcdeq0 11932 algcvgblem 12003 prmexpb 12105 ennnfonelemim 12379 grprcan 12740 grplcan 12761 grpinv11 12768 tgdom 12866 en1top 12871 hmeocnvb 13112 metrest 13300 lgsne0 13733 bj-nnbist 13779 bj-nnbidc 13792 bj-peano4 13990 bj-nn0sucALT 14013 |
Copyright terms: Public domain | W3C validator |