| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbid1 | Unicode version | ||
| Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) |
| Ref | Expression |
|---|---|
| impbid1.1 |
|
| impbid1.2 |
|
| Ref | Expression |
|---|---|
| impbid1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbid1.1 |
. 2
| |
| 2 | impbid1.2 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1, 3 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: impbid2 143 iba 300 ibar 301 pm4.81dc 913 pm5.63dc 952 pm4.83dc 957 pm5.71dc 967 19.33b2 1675 19.9t 1688 sb4b 1880 a16gb 1911 euor2 2136 eupickbi 2160 ceqsalg 2828 eqvincg 2927 ddifstab 3336 csbprc 3537 undif4 3554 eqifdc 3639 ifnebibdc 3648 ssprsseq 3830 sssnm 3832 sneqbg 3841 opthpr 3850 elpwuni 4055 ss1o0el1 4281 exmid01 4282 exmidundif 4290 eusv2i 4546 reusv3 4551 iunpw 4571 suc11g 4649 reldmm 4942 ssxpbm 5164 ssxp1 5165 ssxp2 5166 xp11m 5167 2elresin 5434 mpteqb 5725 f1fveq 5896 f1elima 5897 f1imass 5898 fliftf 5923 nnsucuniel 6641 iserd 6706 ecopovtrn 6779 ecopover 6780 ecopovtrng 6782 ecopoverg 6783 map0g 6835 fopwdom 6997 f1finf1o 7114 mkvprop 7325 addcanpig 7521 mulcanpig 7522 srpospr 7970 readdcan 8286 cnegexlem1 8321 addcan 8326 addcan2 8327 neg11 8397 negreb 8411 add20 8621 cru 8749 mulcanapd 8808 uz11 9745 eqreznegel 9809 lbzbi 9811 xneg11 10030 xnn0xadd0 10063 xsubge0 10077 elioc2 10132 elico2 10133 elicc2 10134 fzopth 10257 2ffzeq 10337 flqidz 10506 addmodlteq 10620 frec2uzrand 10627 nninfinf 10665 expcan 10938 nn0opthd 10944 fz1eqb 11012 wrdnval 11102 eqwrd 11112 wrdl1s1 11163 ccatopth 11248 ccatopth2 11249 cj11 11416 sqrt0 11515 recan 11620 0dvds 12322 dvds1 12364 alzdvds 12365 nn0enne 12413 nn0oddm1d2 12420 nnoddm1d2 12421 divalgmod 12438 gcdeq0 12498 algcvgblem 12571 prmexpb 12673 4sqexercise2 12922 4sqlemsdc 12923 4sqlem11 12924 ennnfonelemim 12995 grprcan 13570 grplcan 13595 grpinv11 13602 isnzr2 14148 znidomb 14622 tgdom 14746 en1top 14751 hmeocnvb 14992 metrest 15180 perfect 15675 lgsne0 15717 2lgs 15783 2lgsoddprmlem3 15790 wrdupgren 15896 wrdumgren 15906 usgrausgrben 15970 upgriswlkdc 16071 bj-nnbist 16108 bj-nnbidc 16121 bj-peano4 16318 bj-nn0sucALT 16341 |
| Copyright terms: Public domain | W3C validator |