ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.24 Unicode version

Theorem pm2.24 622
Description: Theorem *2.24 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.24  |-  ( ph  ->  ( -.  ph  ->  ps ) )

Proof of Theorem pm2.24
StepHypRef Expression
1 pm2.21 618 . 2  |-  ( -. 
ph  ->  ( ph  ->  ps ) )
21com12 30 1  |-  ( ph  ->  ( -.  ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in2 616
This theorem is referenced by:  pm2.24d  623  pm2.53  723  pm2.82  813  pm4.81dc  909  dedlema  971  alexim  1659  eqneqall  2377  elnelall  2474  sotritric  4360  ltxrlt  8109  zltnle  9389  elfzonlteqm1  10303  qltnle  10350  hashfzp1  10933  dfgcd2  12206  oddprmdvds  12548  2lgsoddprm  15438  bj-fast  15471  nnnotnotr  15720
  Copyright terms: Public domain W3C validator