ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.24 Unicode version

Theorem pm2.24 586
Description: Theorem *2.24 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.24  |-  ( ph  ->  ( -.  ph  ->  ps ) )

Proof of Theorem pm2.24
StepHypRef Expression
1 pm2.21 582 . 2  |-  ( -. 
ph  ->  ( ph  ->  ps ) )
21com12 30 1  |-  ( ph  ->  ( -.  ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-in2 580
This theorem is referenced by:  pm2.24d  587  pm2.53  676  pm2.82  761  pm4.81dc  852  dedlema  915  alexim  1581  eqneqall  2265  sotritric  4142  ltxrlt  7531  zltnle  8766  elfzonlteqm1  9586  qltnle  9622  hashfzp1  10197  dfgcd2  11096
  Copyright terms: Public domain W3C validator