ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.24 Unicode version

Theorem pm2.24 622
Description: Theorem *2.24 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.24  |-  ( ph  ->  ( -.  ph  ->  ps ) )

Proof of Theorem pm2.24
StepHypRef Expression
1 pm2.21 618 . 2  |-  ( -. 
ph  ->  ( ph  ->  ps ) )
21com12 30 1  |-  ( ph  ->  ( -.  ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in2 616
This theorem is referenced by:  pm2.24d  623  pm2.53  723  pm2.82  813  pm4.81dc  909  dedlema  971  alexim  1667  eqneqall  2385  elnelall  2482  sotritric  4370  ltxrlt  8137  zltnle  9417  elfzonlteqm1  10337  qltnle  10384  hashfzp1  10967  dfgcd2  12306  oddprmdvds  12648  2lgsoddprm  15561  bj-fast  15639  nnnotnotr  15888
  Copyright terms: Public domain W3C validator