ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.24 Unicode version

Theorem pm2.24 616
Description: Theorem *2.24 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.24  |-  ( ph  ->  ( -.  ph  ->  ps ) )

Proof of Theorem pm2.24
StepHypRef Expression
1 pm2.21 612 . 2  |-  ( -. 
ph  ->  ( ph  ->  ps ) )
21com12 30 1  |-  ( ph  ->  ( -.  ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in2 610
This theorem is referenced by:  pm2.24d  617  pm2.53  717  pm2.82  807  pm4.81dc  903  dedlema  964  alexim  1638  eqneqall  2350  elnelall  2447  sotritric  4307  ltxrlt  7972  zltnle  9245  elfzonlteqm1  10153  qltnle  10189  hashfzp1  10746  dfgcd2  11956  oddprmdvds  12293  bj-fast  13735  nnnotnotr  13985
  Copyright terms: Public domain W3C validator