ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.24 Unicode version

Theorem pm2.24 622
Description: Theorem *2.24 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.24  |-  ( ph  ->  ( -.  ph  ->  ps ) )

Proof of Theorem pm2.24
StepHypRef Expression
1 pm2.21 618 . 2  |-  ( -. 
ph  ->  ( ph  ->  ps ) )
21com12 30 1  |-  ( ph  ->  ( -.  ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in2 616
This theorem is referenced by:  pm2.24d  623  pm2.53  724  pm2.82  814  pm4.81dc  910  dedlema  972  alexim  1669  eqneqall  2388  elnelall  2485  sotritric  4389  ltxrlt  8173  zltnle  9453  elfzonlteqm1  10376  qltnle  10423  hashfzp1  11006  swrdccat3blem  11230  dfgcd2  12450  oddprmdvds  12792  2lgsoddprm  15705  bj-fast  15877  nnnotnotr  16125
  Copyright terms: Public domain W3C validator