ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.21 Unicode version

Theorem pm5.21 685
Description: Two propositions are equivalent if they are both false. Theorem *5.21 of [WhiteheadRussell] p. 124. (Contributed by NM, 21-May-1994.) (Revised by Mario Carneiro, 31-Jan-2015.)
Assertion
Ref Expression
pm5.21  |-  ( ( -.  ph  /\  -.  ps )  ->  ( ph  <->  ps )
)

Proof of Theorem pm5.21
StepHypRef Expression
1 simpl 108 . . 3  |-  ( ( -.  ph  /\  -.  ps )  ->  -.  ph )
21pm2.21d 609 . 2  |-  ( ( -.  ph  /\  -.  ps )  ->  ( ph  ->  ps ) )
3 simpr 109 . . 3  |-  ( ( -.  ph  /\  -.  ps )  ->  -.  ps )
43pm2.21d 609 . 2  |-  ( ( -.  ph  /\  -.  ps )  ->  ( ps  ->  ph ) )
52, 4impbid 128 1  |-  ( ( -.  ph  /\  -.  ps )  ->  ( ph  <->  ps )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm5.21im  686
  Copyright terms: Public domain W3C validator