| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.21d | Unicode version | ||
| Description: A contradiction implies anything. Deduction from pm2.21 620. (Contributed by NM, 10-Feb-1996.) |
| Ref | Expression |
|---|---|
| pm2.21d.1 |
|
| Ref | Expression |
|---|---|
| pm2.21d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21d.1 |
. 2
| |
| 2 | pm2.21 620 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 618 |
| This theorem is referenced by: pm2.21dd 623 pm5.21 700 2falsed 707 mtord 788 prlem1 979 eq0rdv 3536 csbprc 3537 rzal 3589 poirr2 5120 nnsucuniel 6639 nnawordex 6673 swoord2 6708 difinfsnlem 7262 exmidomni 7305 elni2 7497 cauappcvgprlemdisj 7834 caucvgprlemdisj 7857 caucvgprprlemdisj 7885 caucvgsr 7985 lelttr 8231 nnsub 9145 nn0ge2m1nn 9425 elnnz 9452 elnn0z 9455 indstr 9784 indstr2 9800 xrltnsym 9985 xrlttr 9987 xrltso 9988 xrlelttr 9998 xltnegi 10027 xsubge0 10073 ixxdisj 10095 icodisj 10184 fzm1 10292 qbtwnxr 10472 frec2uzlt2d 10621 nn0ltexp2 10926 facdiv 10955 resqrexlemgt0 11526 climuni 11799 fsumcl2lem 11904 dvdsle 12350 prmdvdsexpr 12667 prmfac1 12669 sqrt2irr 12679 phibndlem 12733 dvdsprmpweqle 12855 isxmet2d 15016 lgsdir2lem2 15702 lgseisenlem2 15744 trilpolemres 16369 |
| Copyright terms: Public domain | W3C validator |