![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm2.21d | Unicode version |
Description: A contradiction implies anything. Deduction from pm2.21 617. (Contributed by NM, 10-Feb-1996.) |
Ref | Expression |
---|---|
pm2.21d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
pm2.21d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | pm2.21 617 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 615 |
This theorem is referenced by: pm2.21dd 620 pm5.21 695 2falsed 702 mtord 783 prlem1 973 eq0rdv 3469 csbprc 3470 rzal 3522 poirr2 5023 nnsucuniel 6498 nnawordex 6532 swoord2 6567 difinfsnlem 7100 exmidomni 7142 elni2 7315 cauappcvgprlemdisj 7652 caucvgprlemdisj 7675 caucvgprprlemdisj 7703 caucvgsr 7803 lelttr 8048 nnsub 8960 nn0ge2m1nn 9238 elnnz 9265 elnn0z 9268 indstr 9595 indstr2 9611 xrltnsym 9795 xrlttr 9797 xrltso 9798 xrlelttr 9808 xltnegi 9837 xsubge0 9883 ixxdisj 9905 icodisj 9994 fzm1 10102 qbtwnxr 10260 frec2uzlt2d 10406 nn0ltexp2 10691 facdiv 10720 resqrexlemgt0 11031 climuni 11303 fsumcl2lem 11408 dvdsle 11852 prmdvdsexpr 12152 prmfac1 12154 sqrt2irr 12164 phibndlem 12218 dvdsprmpweqle 12338 isxmet2d 13887 lgsdir2lem2 14469 lgseisenlem2 14490 trilpolemres 14829 |
Copyright terms: Public domain | W3C validator |