| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.21d | Unicode version | ||
| Description: A contradiction implies anything. Deduction from pm2.21 618. (Contributed by NM, 10-Feb-1996.) |
| Ref | Expression |
|---|---|
| pm2.21d.1 |
|
| Ref | Expression |
|---|---|
| pm2.21d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21d.1 |
. 2
| |
| 2 | pm2.21 618 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 616 |
| This theorem is referenced by: pm2.21dd 621 pm5.21 696 2falsed 703 mtord 784 prlem1 975 eq0rdv 3504 csbprc 3505 rzal 3557 poirr2 5074 nnsucuniel 6580 nnawordex 6614 swoord2 6649 difinfsnlem 7200 exmidomni 7243 elni2 7426 cauappcvgprlemdisj 7763 caucvgprlemdisj 7786 caucvgprprlemdisj 7814 caucvgsr 7914 lelttr 8160 nnsub 9074 nn0ge2m1nn 9354 elnnz 9381 elnn0z 9384 indstr 9713 indstr2 9729 xrltnsym 9914 xrlttr 9916 xrltso 9917 xrlelttr 9927 xltnegi 9956 xsubge0 10002 ixxdisj 10024 icodisj 10113 fzm1 10221 qbtwnxr 10398 frec2uzlt2d 10547 nn0ltexp2 10852 facdiv 10881 resqrexlemgt0 11273 climuni 11546 fsumcl2lem 11651 dvdsle 12097 prmdvdsexpr 12414 prmfac1 12416 sqrt2irr 12426 phibndlem 12480 dvdsprmpweqle 12602 isxmet2d 14762 lgsdir2lem2 15448 lgseisenlem2 15490 trilpolemres 15914 |
| Copyright terms: Public domain | W3C validator |