![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm2.21d | Unicode version |
Description: A contradiction implies anything. Deduction from pm2.21 618. (Contributed by NM, 10-Feb-1996.) |
Ref | Expression |
---|---|
pm2.21d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
pm2.21d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | pm2.21 618 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 616 |
This theorem is referenced by: pm2.21dd 621 pm5.21 696 2falsed 703 mtord 784 prlem1 975 eq0rdv 3491 csbprc 3492 rzal 3544 poirr2 5058 nnsucuniel 6548 nnawordex 6582 swoord2 6617 difinfsnlem 7158 exmidomni 7201 elni2 7374 cauappcvgprlemdisj 7711 caucvgprlemdisj 7734 caucvgprprlemdisj 7762 caucvgsr 7862 lelttr 8108 nnsub 9021 nn0ge2m1nn 9300 elnnz 9327 elnn0z 9330 indstr 9658 indstr2 9674 xrltnsym 9859 xrlttr 9861 xrltso 9862 xrlelttr 9872 xltnegi 9901 xsubge0 9947 ixxdisj 9969 icodisj 10058 fzm1 10166 qbtwnxr 10326 frec2uzlt2d 10475 nn0ltexp2 10780 facdiv 10809 resqrexlemgt0 11164 climuni 11436 fsumcl2lem 11541 dvdsle 11986 prmdvdsexpr 12288 prmfac1 12290 sqrt2irr 12300 phibndlem 12354 dvdsprmpweqle 12475 isxmet2d 14516 lgsdir2lem2 15145 lgseisenlem2 15187 trilpolemres 15532 |
Copyright terms: Public domain | W3C validator |