| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.21d | Unicode version | ||
| Description: A contradiction implies anything. Deduction from pm2.21 618. (Contributed by NM, 10-Feb-1996.) |
| Ref | Expression |
|---|---|
| pm2.21d.1 |
|
| Ref | Expression |
|---|---|
| pm2.21d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21d.1 |
. 2
| |
| 2 | pm2.21 618 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 616 |
| This theorem is referenced by: pm2.21dd 621 pm5.21 697 2falsed 704 mtord 785 prlem1 976 eq0rdv 3509 csbprc 3510 rzal 3562 poirr2 5084 nnsucuniel 6594 nnawordex 6628 swoord2 6663 difinfsnlem 7216 exmidomni 7259 elni2 7447 cauappcvgprlemdisj 7784 caucvgprlemdisj 7807 caucvgprprlemdisj 7835 caucvgsr 7935 lelttr 8181 nnsub 9095 nn0ge2m1nn 9375 elnnz 9402 elnn0z 9405 indstr 9734 indstr2 9750 xrltnsym 9935 xrlttr 9937 xrltso 9938 xrlelttr 9948 xltnegi 9977 xsubge0 10023 ixxdisj 10045 icodisj 10134 fzm1 10242 qbtwnxr 10422 frec2uzlt2d 10571 nn0ltexp2 10876 facdiv 10905 resqrexlemgt0 11406 climuni 11679 fsumcl2lem 11784 dvdsle 12230 prmdvdsexpr 12547 prmfac1 12549 sqrt2irr 12559 phibndlem 12613 dvdsprmpweqle 12735 isxmet2d 14895 lgsdir2lem2 15581 lgseisenlem2 15623 trilpolemres 16122 |
| Copyright terms: Public domain | W3C validator |