| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.21d | Unicode version | ||
| Description: A contradiction implies anything. Deduction from pm2.21 618. (Contributed by NM, 10-Feb-1996.) |
| Ref | Expression |
|---|---|
| pm2.21d.1 |
|
| Ref | Expression |
|---|---|
| pm2.21d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21d.1 |
. 2
| |
| 2 | pm2.21 618 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 616 |
| This theorem is referenced by: pm2.21dd 621 pm5.21 696 2falsed 703 mtord 784 prlem1 975 eq0rdv 3495 csbprc 3496 rzal 3548 poirr2 5062 nnsucuniel 6553 nnawordex 6587 swoord2 6622 difinfsnlem 7165 exmidomni 7208 elni2 7381 cauappcvgprlemdisj 7718 caucvgprlemdisj 7741 caucvgprprlemdisj 7769 caucvgsr 7869 lelttr 8115 nnsub 9029 nn0ge2m1nn 9309 elnnz 9336 elnn0z 9339 indstr 9667 indstr2 9683 xrltnsym 9868 xrlttr 9870 xrltso 9871 xrlelttr 9881 xltnegi 9910 xsubge0 9956 ixxdisj 9978 icodisj 10067 fzm1 10175 qbtwnxr 10347 frec2uzlt2d 10496 nn0ltexp2 10801 facdiv 10830 resqrexlemgt0 11185 climuni 11458 fsumcl2lem 11563 dvdsle 12009 prmdvdsexpr 12318 prmfac1 12320 sqrt2irr 12330 phibndlem 12384 dvdsprmpweqle 12506 isxmet2d 14584 lgsdir2lem2 15270 lgseisenlem2 15312 trilpolemres 15686 |
| Copyright terms: Public domain | W3C validator |