| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.21d | Unicode version | ||
| Description: A contradiction implies anything. Deduction from pm2.21 618. (Contributed by NM, 10-Feb-1996.) |
| Ref | Expression |
|---|---|
| pm2.21d.1 |
|
| Ref | Expression |
|---|---|
| pm2.21d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21d.1 |
. 2
| |
| 2 | pm2.21 618 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 616 |
| This theorem is referenced by: pm2.21dd 621 pm5.21 696 2falsed 703 mtord 784 prlem1 975 eq0rdv 3504 csbprc 3505 rzal 3557 poirr2 5072 nnsucuniel 6571 nnawordex 6605 swoord2 6640 difinfsnlem 7183 exmidomni 7226 elni2 7409 cauappcvgprlemdisj 7746 caucvgprlemdisj 7769 caucvgprprlemdisj 7797 caucvgsr 7897 lelttr 8143 nnsub 9057 nn0ge2m1nn 9337 elnnz 9364 elnn0z 9367 indstr 9696 indstr2 9712 xrltnsym 9897 xrlttr 9899 xrltso 9900 xrlelttr 9910 xltnegi 9939 xsubge0 9985 ixxdisj 10007 icodisj 10096 fzm1 10204 qbtwnxr 10381 frec2uzlt2d 10530 nn0ltexp2 10835 facdiv 10864 resqrexlemgt0 11250 climuni 11523 fsumcl2lem 11628 dvdsle 12074 prmdvdsexpr 12391 prmfac1 12393 sqrt2irr 12403 phibndlem 12457 dvdsprmpweqle 12579 isxmet2d 14738 lgsdir2lem2 15424 lgseisenlem2 15466 trilpolemres 15845 |
| Copyright terms: Public domain | W3C validator |