Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm2.21d | Unicode version |
Description: A contradiction implies anything. Deduction from pm2.21 613. (Contributed by NM, 10-Feb-1996.) |
Ref | Expression |
---|---|
pm2.21d.1 |
Ref | Expression |
---|---|
pm2.21d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21d.1 | . 2 | |
2 | pm2.21 613 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 611 |
This theorem is referenced by: pm2.21dd 616 pm5.21 691 2falsed 698 mtord 779 prlem1 969 eq0rdv 3460 csbprc 3461 rzal 3513 poirr2 5005 nnsucuniel 6478 nnawordex 6512 swoord2 6547 difinfsnlem 7080 exmidomni 7122 elni2 7280 cauappcvgprlemdisj 7617 caucvgprlemdisj 7640 caucvgprprlemdisj 7668 caucvgsr 7768 lelttr 8012 nnsub 8921 nn0ge2m1nn 9199 elnnz 9226 elnn0z 9229 indstr 9556 indstr2 9572 xrltnsym 9754 xrlttr 9756 xrltso 9757 xrlelttr 9767 xltnegi 9796 xsubge0 9842 ixxdisj 9864 icodisj 9953 fzm1 10060 qbtwnxr 10218 frec2uzlt2d 10364 nn0ltexp2 10648 facdiv 10676 resqrexlemgt0 10988 climuni 11260 fsumcl2lem 11365 dvdsle 11808 prmdvdsexpr 12108 prmfac1 12110 sqrt2irr 12120 phibndlem 12174 dvdsprmpweqle 12294 isxmet2d 13227 lgsdir2lem2 13809 trilpolemres 14159 |
Copyright terms: Public domain | W3C validator |