ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.21 GIF version

Theorem pm5.21 685
Description: Two propositions are equivalent if they are both false. Theorem *5.21 of [WhiteheadRussell] p. 124. (Contributed by NM, 21-May-1994.) (Revised by Mario Carneiro, 31-Jan-2015.)
Assertion
Ref Expression
pm5.21 ((¬ 𝜑 ∧ ¬ 𝜓) → (𝜑𝜓))

Proof of Theorem pm5.21
StepHypRef Expression
1 simpl 108 . . 3 ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ 𝜑)
21pm2.21d 609 . 2 ((¬ 𝜑 ∧ ¬ 𝜓) → (𝜑𝜓))
3 simpr 109 . . 3 ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ 𝜓)
43pm2.21d 609 . 2 ((¬ 𝜑 ∧ ¬ 𝜓) → (𝜓𝜑))
52, 4impbid 128 1 ((¬ 𝜑 ∧ ¬ 𝜓) → (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm5.21im  686
  Copyright terms: Public domain W3C validator