ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.33 Unicode version

Theorem pm5.33 599
Description: Theorem *5.33 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm5.33  |-  ( (
ph  /\  ( ps  ->  ch ) )  <->  ( ph  /\  ( ( ph  /\  ps )  ->  ch )
) )

Proof of Theorem pm5.33
StepHypRef Expression
1 ibar 299 . . 3  |-  ( ph  ->  ( ps  <->  ( ph  /\ 
ps ) ) )
21imbi1d 230 . 2  |-  ( ph  ->  ( ( ps  ->  ch )  <->  ( ( ph  /\ 
ps )  ->  ch ) ) )
32pm5.32i 450 1  |-  ( (
ph  /\  ( ps  ->  ch ) )  <->  ( ph  /\  ( ( ph  /\  ps )  ->  ch )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator