| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.32i | Unicode version | ||
| Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| pm5.32i.1 |
|
| Ref | Expression |
|---|---|
| pm5.32i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32i.1 |
. 2
| |
| 2 | pm5.32 453 |
. 2
| |
| 3 | 1, 2 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.32ri 455 biadan2 456 anbi2i 457 abai 560 anabs5 573 pm5.33 609 eq2tri 2265 rexbiia 2521 reubiia 2691 rmobiia 2696 rabbiia 2757 ceqsrexbv 2904 euxfrdc 2959 eldifpr 3660 eldiftp 3679 eldifsn 3760 elrint 3925 elriin 3998 opeqsn 4297 rabxp 4712 eliunxp 4817 restidsing 5015 ressn 5223 fncnv 5340 dff1o5 5531 respreima 5708 dff4im 5726 dffo3 5727 f1ompt 5731 fsn 5752 fconst3m 5803 fconst4m 5804 eufnfv 5815 dff13 5837 f1mpt 5840 isores2 5882 isoini 5887 eloprabga 6032 mpomptx 6036 resoprab 6041 ov6g 6084 dfopab2 6275 dfoprab3s 6276 dfoprab3 6277 f1od2 6321 brtpos2 6337 dftpos3 6348 tpostpos 6350 dfsmo2 6373 elixp2 6789 mapsnen 6903 xpcomco 6921 eqinfti 7122 dfplpq2 7467 dfmpq2 7468 enq0enq 7544 nqnq0a 7567 nqnq0m 7568 genpassl 7637 genpassu 7638 axsuploc 8145 recexre 8651 recexgt0 8653 reapmul1 8668 apsqgt0 8674 apreim 8676 recexaplem2 8725 rerecclap 8803 elznn0 9387 elznn 9388 msqznn 9473 eluz2b1 9722 eluz2b3 9725 qreccl 9763 rpnegap 9808 elfz2nn0 10234 elfzo3 10286 frecuzrdgtcl 10557 frecuzrdgfunlem 10564 qexpclz 10705 shftidt2 11143 clim0 11596 iser3shft 11657 summodclem3 11691 fprod2dlemstep 11933 eftlub 12001 ndvdsadd 12242 algfx 12374 isprm3 12440 isprm5 12464 xpsfrnel 13176 isabl2 13630 dvdsrcl2 13861 unitinvcl 13885 unitinvinv 13886 unitlinv 13888 unitrinv 13889 isrim 13931 isnzr2 13946 islmod 14053 isridl 14266 cnfldui 14351 ssntr 14594 tx1cn 14741 tx2cn 14742 pilem1 15251 lgsdir2lem4 15508 |
| Copyright terms: Public domain | W3C validator |