Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm5.32i | Unicode version |
Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
pm5.32i.1 |
Ref | Expression |
---|---|
pm5.32i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32i.1 | . 2 | |
2 | pm5.32 449 | . 2 | |
3 | 1, 2 | mpbi 144 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm5.32ri 451 biadan2 452 anbi2i 453 abai 550 anabs5 563 pm5.33 599 eq2tri 2217 rexbiia 2472 reubiia 2641 rmobiia 2646 rabbiia 2697 ceqsrexbv 2843 euxfrdc 2898 eldifpr 3587 eldiftp 3605 eldifsn 3686 elrint 3847 elriin 3919 opeqsn 4211 rabxp 4620 eliunxp 4722 ressn 5123 fncnv 5233 dff1o5 5420 respreima 5592 dff4im 5610 dffo3 5611 f1ompt 5615 fsn 5636 fconst3m 5683 fconst4m 5684 eufnfv 5692 dff13 5713 f1mpt 5716 isores2 5758 isoini 5763 eloprabga 5902 mpomptx 5906 resoprab 5911 ov6g 5952 dfopab2 6131 dfoprab3s 6132 dfoprab3 6133 f1od2 6176 brtpos2 6192 dftpos3 6203 tpostpos 6205 dfsmo2 6228 elixp2 6640 mapsnen 6749 xpcomco 6764 eqinfti 6956 dfplpq2 7257 dfmpq2 7258 enq0enq 7334 nqnq0a 7357 nqnq0m 7358 genpassl 7427 genpassu 7428 axsuploc 7933 recexre 8436 recexgt0 8438 reapmul1 8453 apsqgt0 8459 apreim 8461 recexaplem2 8509 rerecclap 8586 elznn0 9165 elznn 9166 msqznn 9247 eluz2b1 9494 eluz2b3 9497 qreccl 9533 rpnegap 9575 elfz2nn0 9996 elfzo3 10044 frecuzrdgtcl 10293 frecuzrdgfunlem 10300 qexpclz 10422 shftidt2 10714 clim0 11164 iser3shft 11225 summodclem3 11259 fprod2dlemstep 11501 eftlub 11569 ndvdsadd 11803 algfx 11909 isprm3 11975 ssntr 12482 tx1cn 12629 tx2cn 12630 pilem1 13060 |
Copyright terms: Public domain | W3C validator |