![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm5.32i | Unicode version |
Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
pm5.32i.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
pm5.32i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32i.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | pm5.32 453 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbi 145 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm5.32ri 455 biadan2 456 anbi2i 457 abai 560 anabs5 573 pm5.33 609 eq2tri 2253 rexbiia 2509 reubiia 2679 rmobiia 2684 rabbiia 2745 ceqsrexbv 2891 euxfrdc 2946 eldifpr 3645 eldiftp 3664 eldifsn 3745 elrint 3910 elriin 3983 opeqsn 4281 rabxp 4696 eliunxp 4801 restidsing 4998 ressn 5206 fncnv 5320 dff1o5 5509 respreima 5686 dff4im 5704 dffo3 5705 f1ompt 5709 fsn 5730 fconst3m 5777 fconst4m 5778 eufnfv 5789 dff13 5811 f1mpt 5814 isores2 5856 isoini 5861 eloprabga 6005 mpomptx 6009 resoprab 6014 ov6g 6056 dfopab2 6242 dfoprab3s 6243 dfoprab3 6244 f1od2 6288 brtpos2 6304 dftpos3 6315 tpostpos 6317 dfsmo2 6340 elixp2 6756 mapsnen 6865 xpcomco 6880 eqinfti 7079 dfplpq2 7414 dfmpq2 7415 enq0enq 7491 nqnq0a 7514 nqnq0m 7515 genpassl 7584 genpassu 7585 axsuploc 8092 recexre 8597 recexgt0 8599 reapmul1 8614 apsqgt0 8620 apreim 8622 recexaplem2 8671 rerecclap 8749 elznn0 9332 elznn 9333 msqznn 9417 eluz2b1 9666 eluz2b3 9669 qreccl 9707 rpnegap 9752 elfz2nn0 10178 elfzo3 10230 frecuzrdgtcl 10483 frecuzrdgfunlem 10490 qexpclz 10631 shftidt2 10976 clim0 11428 iser3shft 11489 summodclem3 11523 fprod2dlemstep 11765 eftlub 11833 ndvdsadd 12072 algfx 12190 isprm3 12256 isprm5 12280 xpsfrnel 12927 isabl2 13364 dvdsrcl2 13595 unitinvcl 13619 unitinvinv 13620 unitlinv 13622 unitrinv 13623 isrim 13665 isnzr2 13680 islmod 13787 isridl 14000 cnfldui 14077 ssntr 14290 tx1cn 14437 tx2cn 14438 pilem1 14914 lgsdir2lem4 15147 |
Copyright terms: Public domain | W3C validator |