| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.32i | Unicode version | ||
| Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| pm5.32i.1 |
|
| Ref | Expression |
|---|---|
| pm5.32i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32i.1 |
. 2
| |
| 2 | pm5.32 453 |
. 2
| |
| 3 | 1, 2 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.32ri 455 biadan2 456 anbi2i 457 abai 560 anabs5 573 pm5.33 609 eq2tri 2267 rexbiia 2523 reubiia 2694 rmobiia 2699 rabbiia 2761 ceqsrexbv 2911 euxfrdc 2966 eldifpr 3670 eldiftp 3689 eldifsn 3771 elrint 3939 elriin 4012 opeqsn 4315 rabxp 4730 eliunxp 4835 restidsing 5034 ressn 5242 fncnv 5359 dff1o5 5553 respreima 5731 dff4im 5749 dffo3 5750 f1ompt 5754 fsn 5775 fconst3m 5826 fconst4m 5827 eufnfv 5838 dff13 5860 f1mpt 5863 isores2 5905 isoini 5910 eloprabga 6055 mpomptx 6059 resoprab 6064 ov6g 6107 dfopab2 6298 dfoprab3s 6299 dfoprab3 6300 f1od2 6344 brtpos2 6360 dftpos3 6371 tpostpos 6373 dfsmo2 6396 elixp2 6812 mapsnen 6927 xpcomco 6946 eqinfti 7148 dfplpq2 7502 dfmpq2 7503 enq0enq 7579 nqnq0a 7602 nqnq0m 7603 genpassl 7672 genpassu 7673 axsuploc 8180 recexre 8686 recexgt0 8688 reapmul1 8703 apsqgt0 8709 apreim 8711 recexaplem2 8760 rerecclap 8838 elznn0 9422 elznn 9423 msqznn 9508 eluz2b1 9757 eluz2b3 9760 qreccl 9798 rpnegap 9843 elfz2nn0 10269 elfzo3 10321 frecuzrdgtcl 10594 frecuzrdgfunlem 10601 qexpclz 10742 shftidt2 11258 clim0 11711 iser3shft 11772 summodclem3 11806 fprod2dlemstep 12048 eftlub 12116 ndvdsadd 12357 algfx 12489 isprm3 12555 isprm5 12579 xpsfrnel 13291 isabl2 13745 dvdsrcl2 13976 unitinvcl 14000 unitinvinv 14001 unitlinv 14003 unitrinv 14004 isrim 14046 isnzr2 14061 islmod 14168 isridl 14381 cnfldui 14466 ssntr 14709 tx1cn 14856 tx2cn 14857 pilem1 15366 lgsdir2lem4 15623 |
| Copyright terms: Public domain | W3C validator |