| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.32i | Unicode version | ||
| Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| pm5.32i.1 |
|
| Ref | Expression |
|---|---|
| pm5.32i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32i.1 |
. 2
| |
| 2 | pm5.32 453 |
. 2
| |
| 3 | 1, 2 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.32ri 455 biadan2 456 anbi2i 457 abai 560 anabs5 573 pm5.33 611 eq2tri 2289 rexbiia 2545 reubiia 2717 rmobiia 2722 rabbiia 2784 ceqsrexbv 2934 euxfrdc 2989 eldifpr 3693 eldiftp 3712 eldifsn 3794 elrint 3962 elriin 4035 opeqsn 4338 rabxp 4755 eliunxp 4860 restidsing 5060 ressn 5268 fncnv 5386 dff1o5 5580 respreima 5762 dff4im 5780 dffo3 5781 f1ompt 5785 fsn 5806 fconst3m 5857 fconst4m 5858 eufnfv 5869 dff13 5891 f1mpt 5894 isores2 5936 isoini 5941 eloprabga 6090 mpomptx 6094 resoprab 6099 ov6g 6142 dfopab2 6333 dfoprab3s 6334 dfoprab3 6335 f1od2 6379 brtpos2 6395 dftpos3 6406 tpostpos 6408 dfsmo2 6431 elixp2 6847 mapsnen 6962 xpcomco 6981 eqinfti 7183 dfplpq2 7537 dfmpq2 7538 enq0enq 7614 nqnq0a 7637 nqnq0m 7638 genpassl 7707 genpassu 7708 axsuploc 8215 recexre 8721 recexgt0 8723 reapmul1 8738 apsqgt0 8744 apreim 8746 recexaplem2 8795 rerecclap 8873 elznn0 9457 elznn 9458 msqznn 9543 eluz2b1 9792 eluz2b3 9795 qreccl 9833 rpnegap 9878 elfz2nn0 10304 elfzo3 10356 frecuzrdgtcl 10629 frecuzrdgfunlem 10636 qexpclz 10777 shftidt2 11338 clim0 11791 iser3shft 11852 summodclem3 11886 fprod2dlemstep 12128 eftlub 12196 ndvdsadd 12437 algfx 12569 isprm3 12635 isprm5 12659 xpsfrnel 13372 isabl2 13826 dvdsrcl2 14057 unitinvcl 14081 unitinvinv 14082 unitlinv 14084 unitrinv 14085 isrim 14127 isnzr2 14142 islmod 14249 isridl 14462 cnfldui 14547 ssntr 14790 tx1cn 14937 tx2cn 14938 pilem1 15447 lgsdir2lem4 15704 |
| Copyright terms: Public domain | W3C validator |