| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.32i | Unicode version | ||
| Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| pm5.32i.1 |
|
| Ref | Expression |
|---|---|
| pm5.32i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32i.1 |
. 2
| |
| 2 | pm5.32 453 |
. 2
| |
| 3 | 1, 2 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.32ri 455 biadan2 456 anbi2i 457 abai 560 anabs5 573 pm5.33 609 eq2tri 2256 rexbiia 2512 reubiia 2682 rmobiia 2687 rabbiia 2748 ceqsrexbv 2895 euxfrdc 2950 eldifpr 3650 eldiftp 3669 eldifsn 3750 elrint 3915 elriin 3988 opeqsn 4286 rabxp 4701 eliunxp 4806 restidsing 5003 ressn 5211 fncnv 5325 dff1o5 5516 respreima 5693 dff4im 5711 dffo3 5712 f1ompt 5716 fsn 5737 fconst3m 5784 fconst4m 5785 eufnfv 5796 dff13 5818 f1mpt 5821 isores2 5863 isoini 5868 eloprabga 6013 mpomptx 6017 resoprab 6022 ov6g 6065 dfopab2 6256 dfoprab3s 6257 dfoprab3 6258 f1od2 6302 brtpos2 6318 dftpos3 6329 tpostpos 6331 dfsmo2 6354 elixp2 6770 mapsnen 6879 xpcomco 6894 eqinfti 7095 dfplpq2 7438 dfmpq2 7439 enq0enq 7515 nqnq0a 7538 nqnq0m 7539 genpassl 7608 genpassu 7609 axsuploc 8116 recexre 8622 recexgt0 8624 reapmul1 8639 apsqgt0 8645 apreim 8647 recexaplem2 8696 rerecclap 8774 elznn0 9358 elznn 9359 msqznn 9443 eluz2b1 9692 eluz2b3 9695 qreccl 9733 rpnegap 9778 elfz2nn0 10204 elfzo3 10256 frecuzrdgtcl 10521 frecuzrdgfunlem 10528 qexpclz 10669 shftidt2 11014 clim0 11467 iser3shft 11528 summodclem3 11562 fprod2dlemstep 11804 eftlub 11872 ndvdsadd 12113 algfx 12245 isprm3 12311 isprm5 12335 xpsfrnel 13046 isabl2 13500 dvdsrcl2 13731 unitinvcl 13755 unitinvinv 13756 unitlinv 13758 unitrinv 13759 isrim 13801 isnzr2 13816 islmod 13923 isridl 14136 cnfldui 14221 ssntr 14442 tx1cn 14589 tx2cn 14590 pilem1 15099 lgsdir2lem4 15356 |
| Copyright terms: Public domain | W3C validator |