| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.32i | Unicode version | ||
| Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| pm5.32i.1 |
|
| Ref | Expression |
|---|---|
| pm5.32i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32i.1 |
. 2
| |
| 2 | pm5.32 453 |
. 2
| |
| 3 | 1, 2 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.32ri 455 biadan2 456 anbi2i 457 abai 560 anabs5 573 pm5.33 609 eq2tri 2264 rexbiia 2520 reubiia 2690 rmobiia 2695 rabbiia 2756 ceqsrexbv 2903 euxfrdc 2958 eldifpr 3659 eldiftp 3678 eldifsn 3759 elrint 3924 elriin 3997 opeqsn 4296 rabxp 4711 eliunxp 4816 restidsing 5014 ressn 5222 fncnv 5339 dff1o5 5530 respreima 5707 dff4im 5725 dffo3 5726 f1ompt 5730 fsn 5751 fconst3m 5802 fconst4m 5803 eufnfv 5814 dff13 5836 f1mpt 5839 isores2 5881 isoini 5886 eloprabga 6031 mpomptx 6035 resoprab 6040 ov6g 6083 dfopab2 6274 dfoprab3s 6275 dfoprab3 6276 f1od2 6320 brtpos2 6336 dftpos3 6347 tpostpos 6349 dfsmo2 6372 elixp2 6788 mapsnen 6902 xpcomco 6920 eqinfti 7121 dfplpq2 7466 dfmpq2 7467 enq0enq 7543 nqnq0a 7566 nqnq0m 7567 genpassl 7636 genpassu 7637 axsuploc 8144 recexre 8650 recexgt0 8652 reapmul1 8667 apsqgt0 8673 apreim 8675 recexaplem2 8724 rerecclap 8802 elznn0 9386 elznn 9387 msqznn 9472 eluz2b1 9721 eluz2b3 9724 qreccl 9762 rpnegap 9807 elfz2nn0 10233 elfzo3 10285 frecuzrdgtcl 10555 frecuzrdgfunlem 10562 qexpclz 10703 shftidt2 11114 clim0 11567 iser3shft 11628 summodclem3 11662 fprod2dlemstep 11904 eftlub 11972 ndvdsadd 12213 algfx 12345 isprm3 12411 isprm5 12435 xpsfrnel 13147 isabl2 13601 dvdsrcl2 13832 unitinvcl 13856 unitinvinv 13857 unitlinv 13859 unitrinv 13860 isrim 13902 isnzr2 13917 islmod 14024 isridl 14237 cnfldui 14322 ssntr 14565 tx1cn 14712 tx2cn 14713 pilem1 15222 lgsdir2lem4 15479 |
| Copyright terms: Public domain | W3C validator |