| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ibar | Unicode version | ||
| Description: Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) (Revised by NM, 24-Mar-2013.) |
| Ref | Expression |
|---|---|
| ibar |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2 139 |
. 2
| |
| 2 | simpr 110 |
. 2
| |
| 3 | 1, 2 | impbid1 142 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biantrur 303 biantrurd 305 anclb 319 pm5.42 320 pm5.32 453 anabs5 573 pm5.33 611 bianabs 613 baib 924 baibd 928 anxordi 1442 euan 2134 eueq3dc 2977 ifandc 3643 xpcom 5275 fvopab3g 5707 riota1a 5975 opabfi 7100 ctssdccl 7278 2omotaplemap 7443 recmulnqg 7578 ltexprlemloc 7794 mul0eqap 8817 eluz2 9728 rpnegap 9882 elfz2 10211 zmodid2 10574 shftfib 11334 dvdsssfz1 12363 modremain 12440 ctiunctlemudc 13008 issubg 13710 resgrpisgrp 13732 qusecsub 13868 issubrng 14163 issubrg 14185 txcnmpt 14947 reopnap 15220 ellimc3apf 15334 2omap 16359 |
| Copyright terms: Public domain | W3C validator |