| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ibar | Unicode version | ||
| Description: Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) (Revised by NM, 24-Mar-2013.) |
| Ref | Expression |
|---|---|
| ibar |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2 139 |
. 2
| |
| 2 | simpr 110 |
. 2
| |
| 3 | 1, 2 | impbid1 142 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biantrur 303 biantrurd 305 anclb 319 pm5.42 320 pm5.32 453 anabs5 573 pm5.33 609 bianabs 611 baib 921 baibd 925 anxordi 1420 euan 2110 eueq3dc 2947 ifandc 3610 xpcom 5230 fvopab3g 5654 riota1a 5921 opabfi 7037 ctssdccl 7215 2omotaplemap 7371 recmulnqg 7506 ltexprlemloc 7722 mul0eqap 8745 eluz2 9656 rpnegap 9810 elfz2 10139 zmodid2 10499 shftfib 11167 dvdsssfz1 12196 modremain 12273 ctiunctlemudc 12841 issubg 13542 resgrpisgrp 13564 qusecsub 13700 issubrng 13994 issubrg 14016 txcnmpt 14778 reopnap 15051 ellimc3apf 15165 2omap 15969 |
| Copyright terms: Public domain | W3C validator |