![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ibar | Unicode version |
Description: Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) (Revised by NM, 24-Mar-2013.) |
Ref | Expression |
---|---|
ibar |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.2 139 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | simpr 110 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | impbid1 142 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biantrur 303 biantrurd 305 anclb 319 pm5.42 320 pm5.32 453 anabs5 573 pm5.33 609 bianabs 611 baib 920 baibd 924 anxordi 1411 euan 2098 eueq3dc 2934 ifandc 3595 xpcom 5212 fvopab3g 5630 riota1a 5893 opabfi 6992 ctssdccl 7170 2omotaplemap 7317 recmulnqg 7451 ltexprlemloc 7667 mul0eqap 8689 eluz2 9598 rpnegap 9752 elfz2 10081 zmodid2 10423 shftfib 10967 dvdsssfz1 11994 modremain 12070 phisum 12378 ctiunctlemudc 12594 issubg 13243 resgrpisgrp 13265 qusecsub 13401 issubrng 13695 issubrg 13717 txcnmpt 14441 reopnap 14706 ellimc3apf 14814 |
Copyright terms: Public domain | W3C validator |