![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ibar | Unicode version |
Description: Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) (Revised by NM, 24-Mar-2013.) |
Ref | Expression |
---|---|
ibar |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.2 139 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | simpr 110 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | impbid1 142 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biantrur 303 biantrurd 305 anclb 319 pm5.42 320 pm5.32 453 anabs5 573 pm5.33 609 bianabs 611 baib 919 baibd 923 anxordi 1400 euan 2082 eueq3dc 2912 ifandc 3573 xpcom 5176 fvopab3g 5590 riota1a 5850 ctssdccl 7110 2omotaplemap 7256 recmulnqg 7390 ltexprlemloc 7606 mul0eqap 8627 eluz2 9534 rpnegap 9686 elfz2 10015 zmodid2 10352 shftfib 10832 dvdsssfz1 11858 modremain 11934 phisum 12240 ctiunctlemudc 12438 issubg 13033 resgrpisgrp 13055 issubrg 13342 txcnmpt 13776 reopnap 14041 ellimc3apf 14132 |
Copyright terms: Public domain | W3C validator |