| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ibar | Unicode version | ||
| Description: Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) (Revised by NM, 24-Mar-2013.) |
| Ref | Expression |
|---|---|
| ibar |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2 139 |
. 2
| |
| 2 | simpr 110 |
. 2
| |
| 3 | 1, 2 | impbid1 142 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biantrur 303 biantrurd 305 anclb 319 pm5.42 320 pm5.32 453 anabs5 573 pm5.33 609 bianabs 611 baib 921 baibd 925 anxordi 1420 euan 2112 eueq3dc 2954 ifandc 3620 xpcom 5248 fvopab3g 5675 riota1a 5942 opabfi 7061 ctssdccl 7239 2omotaplemap 7404 recmulnqg 7539 ltexprlemloc 7755 mul0eqap 8778 eluz2 9689 rpnegap 9843 elfz2 10172 zmodid2 10534 shftfib 11249 dvdsssfz1 12278 modremain 12355 ctiunctlemudc 12923 issubg 13624 resgrpisgrp 13646 qusecsub 13782 issubrng 14076 issubrg 14098 txcnmpt 14860 reopnap 15133 ellimc3apf 15247 2omap 16132 |
| Copyright terms: Public domain | W3C validator |