| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ibar | Unicode version | ||
| Description: Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) (Revised by NM, 24-Mar-2013.) | 
| Ref | Expression | 
|---|---|
| ibar | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm3.2 139 | 
. 2
 | |
| 2 | simpr 110 | 
. 2
 | |
| 3 | 1, 2 | impbid1 142 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: biantrur 303 biantrurd 305 anclb 319 pm5.42 320 pm5.32 453 anabs5 573 pm5.33 609 bianabs 611 baib 920 baibd 924 anxordi 1411 euan 2101 eueq3dc 2938 ifandc 3599 xpcom 5216 fvopab3g 5634 riota1a 5897 opabfi 6999 ctssdccl 7177 2omotaplemap 7324 recmulnqg 7458 ltexprlemloc 7674 mul0eqap 8697 eluz2 9607 rpnegap 9761 elfz2 10090 zmodid2 10444 shftfib 10988 dvdsssfz1 12017 modremain 12094 ctiunctlemudc 12654 issubg 13303 resgrpisgrp 13325 qusecsub 13461 issubrng 13755 issubrg 13777 txcnmpt 14509 reopnap 14782 ellimc3apf 14896 | 
| Copyright terms: Public domain | W3C validator |