| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ibar | Unicode version | ||
| Description: Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) (Revised by NM, 24-Mar-2013.) |
| Ref | Expression |
|---|---|
| ibar |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2 139 |
. 2
| |
| 2 | simpr 110 |
. 2
| |
| 3 | 1, 2 | impbid1 142 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biantrur 303 biantrurd 305 anclb 319 pm5.42 320 pm5.32 453 anabs5 573 pm5.33 609 bianabs 611 baib 921 baibd 925 anxordi 1420 euan 2110 eueq3dc 2947 ifandc 3610 xpcom 5229 fvopab3g 5652 riota1a 5919 opabfi 7035 ctssdccl 7213 2omotaplemap 7369 recmulnqg 7504 ltexprlemloc 7720 mul0eqap 8743 eluz2 9654 rpnegap 9808 elfz2 10137 zmodid2 10497 shftfib 11134 dvdsssfz1 12163 modremain 12240 ctiunctlemudc 12808 issubg 13509 resgrpisgrp 13531 qusecsub 13667 issubrng 13961 issubrg 13983 txcnmpt 14745 reopnap 15018 ellimc3apf 15132 2omap 15932 |
| Copyright terms: Public domain | W3C validator |