Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ibar | Unicode version |
Description: Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) (Revised by NM, 24-Mar-2013.) |
Ref | Expression |
---|---|
ibar |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.2 138 | . 2 | |
2 | simpr 109 | . 2 | |
3 | 1, 2 | impbid1 141 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: biantrur 301 biantrurd 303 anclb 317 pm5.42 318 pm5.32 450 anabs5 568 pm5.33 604 bianabs 606 baib 914 baibd 918 anxordi 1395 euan 2075 eueq3dc 2904 ifandc 3563 xpcom 5157 fvopab3g 5569 riota1a 5828 ctssdccl 7088 recmulnqg 7353 ltexprlemloc 7569 mul0eqap 8588 eluz2 9493 rpnegap 9643 elfz2 9972 zmodid2 10308 shftfib 10787 dvdsssfz1 11812 modremain 11888 phisum 12194 ctiunctlemudc 12392 txcnmpt 13067 reopnap 13332 ellimc3apf 13423 |
Copyright terms: Public domain | W3C validator |