ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.42 Unicode version

Theorem pm5.42 318
Description: Theorem *5.42 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm5.42  |-  ( (
ph  ->  ( ps  ->  ch ) )  <->  ( ph  ->  ( ps  ->  ( ph  /\  ch ) ) ) )

Proof of Theorem pm5.42
StepHypRef Expression
1 ibar 299 . . 3  |-  ( ph  ->  ( ch  <->  ( ph  /\ 
ch ) ) )
21imbi2d 229 . 2  |-  ( ph  ->  ( ( ps  ->  ch )  <->  ( ps  ->  (
ph  /\  ch )
) ) )
32pm5.74i 179 1  |-  ( (
ph  ->  ( ps  ->  ch ) )  <->  ( ph  ->  ( ps  ->  ( ph  /\  ch ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  anc2l  325  imdistan  442
  Copyright terms: Public domain W3C validator