ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imdistan Unicode version

Theorem imdistan 441
Description: Distribution of implication with conjunction. (Contributed by NM, 31-May-1999.) (Proof shortened by Wolf Lammen, 6-Dec-2012.)
Assertion
Ref Expression
imdistan  |-  ( (
ph  ->  ( ps  ->  ch ) )  <->  ( ( ph  /\  ps )  -> 
( ph  /\  ch )
) )

Proof of Theorem imdistan
StepHypRef Expression
1 pm5.42 318 . 2  |-  ( (
ph  ->  ( ps  ->  ch ) )  <->  ( ph  ->  ( ps  ->  ( ph  /\  ch ) ) ) )
2 impexp 261 . 2  |-  ( ( ( ph  /\  ps )  ->  ( ph  /\  ch ) )  <->  ( ph  ->  ( ps  ->  ( ph  /\  ch ) ) ) )
31, 2bitr4i 186 1  |-  ( (
ph  ->  ( ps  ->  ch ) )  <->  ( ( ph  /\  ps )  -> 
( ph  /\  ch )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  imdistand  444  pm5.3  467  rmoim  2927  ss2rab  3218  bezoutlembi  11938
  Copyright terms: Public domain W3C validator