ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp-6r Unicode version

Theorem simp-6r 536
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.)
Assertion
Ref Expression
simp-6r  |-  ( ( ( ( ( ( ( ph  /\  ps )  /\  ch )  /\  th )  /\  ta )  /\  et )  /\  ze )  ->  ps )

Proof of Theorem simp-6r
StepHypRef Expression
1 simp-5r 534 . 2  |-  ( ( ( ( ( (
ph  /\  ps )  /\  ch )  /\  th )  /\  ta )  /\  et )  ->  ps )
21adantr 274 1  |-  ( ( ( ( ( ( ( ph  /\  ps )  /\  ch )  /\  th )  /\  ta )  /\  et )  /\  ze )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem is referenced by:  simp-7r  538  suplocsrlem  7749
  Copyright terms: Public domain W3C validator