ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp-5r Unicode version

Theorem simp-5r 539
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.)
Assertion
Ref Expression
simp-5r  |-  ( ( ( ( ( (
ph  /\  ps )  /\  ch )  /\  th )  /\  ta )  /\  et )  ->  ps )

Proof of Theorem simp-5r
StepHypRef Expression
1 simp-4r 537 . 2  |-  ( ( ( ( ( ph  /\ 
ps )  /\  ch )  /\  th )  /\  ta )  ->  ps )
21adantr 274 1  |-  ( ( ( ( ( (
ph  /\  ps )  /\  ch )  /\  th )  /\  ta )  /\  et )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem is referenced by:  simp-6r  541  exmidfodomrlemr  7179  exmidfodomrlemrALT  7180  xaddf  9801  mulcncf  13385  suplociccreex  13396  cnplimclemr  13432
  Copyright terms: Public domain W3C validator