ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp1ll Unicode version

Theorem simp1ll 1049
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1ll  |-  ( ( ( ( ph  /\  ps )  /\  ch )  /\  th  /\  ta )  ->  ph )

Proof of Theorem simp1ll
StepHypRef Expression
1 simpll 519 . 2  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  ph )
213ad2ant1 1007 1  |-  ( ( ( ( ph  /\  ps )  /\  ch )  /\  th  /\  ta )  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 969
This theorem is referenced by:  tfrcllembacc  6315  frecfcllem  6364
  Copyright terms: Public domain W3C validator