ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllembacc Unicode version

Theorem tfrcllembacc 6370
Description: Lemma for tfrcl 6379. Each element of  B is an acceptable function. (Contributed by Jim Kingdon, 25-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f  |-  F  = recs ( G )
tfrcl.g  |-  ( ph  ->  Fun  G )
tfrcl.x  |-  ( ph  ->  Ord  X )
tfrcl.ex  |-  ( (
ph  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S )
tfrcllemsucfn.1  |-  A  =  { f  |  E. x  e.  X  (
f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
tfrcllembacc.3  |-  B  =  { h  |  E. z  e.  D  E. g ( g : z --> S  /\  g  e.  A  /\  h  =  ( g  u. 
{ <. z ,  ( G `  g )
>. } ) ) }
tfrcllembacc.u  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
tfrcllembacc.4  |-  ( ph  ->  D  e.  X )
tfrcllembacc.5  |-  ( ph  ->  A. z  e.  D  E. g ( g : z --> S  /\  A. w  e.  z  (
g `  w )  =  ( G `  ( g  |`  w
) ) ) )
Assertion
Ref Expression
tfrcllembacc  |-  ( ph  ->  B  C_  A )
Distinct variable groups:    A, f, g, h, x, y, z    D, f, g, x, y   
f, G, x, y    S, f, x, y    f, X, x    ph, f, g, h, x, y, z
Allowed substitution hints:    ph( w)    A( w)    B( x, y, z, w, f, g, h)    D( z, w, h)    S( z, w, g, h)    F( x, y, z, w, f, g, h)    G( z, w, g, h)    X( y, z, w, g, h)

Proof of Theorem tfrcllembacc
StepHypRef Expression
1 tfrcllembacc.3 . 2  |-  B  =  { h  |  E. z  e.  D  E. g ( g : z --> S  /\  g  e.  A  /\  h  =  ( g  u. 
{ <. z ,  ( G `  g )
>. } ) ) }
2 simpr3 1006 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g : z --> S  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( G `  g ) >. } ) ) )  ->  h  =  ( g  u. 
{ <. z ,  ( G `  g )
>. } ) )
3 tfrcl.f . . . . . . . 8  |-  F  = recs ( G )
4 tfrcl.g . . . . . . . . 9  |-  ( ph  ->  Fun  G )
54ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g : z --> S  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( G `  g ) >. } ) ) )  ->  Fun  G )
6 tfrcl.x . . . . . . . . 9  |-  ( ph  ->  Ord  X )
76ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g : z --> S  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( G `  g ) >. } ) ) )  ->  Ord  X )
8 simp1ll 1061 . . . . . . . . 9  |-  ( ( ( ( ph  /\  z  e.  D )  /\  ( g : z --> S  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) )  /\  x  e.  X  /\  f : x --> S )  ->  ph )
9 tfrcl.ex . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S )
108, 9syld3an1 1294 . . . . . . . 8  |-  ( ( ( ( ph  /\  z  e.  D )  /\  ( g : z --> S  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) )  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S
)
11 tfrcllemsucfn.1 . . . . . . . 8  |-  A  =  { f  |  E. x  e.  X  (
f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
12 tfrcllembacc.4 . . . . . . . . 9  |-  ( ph  ->  D  e.  X )
1312ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g : z --> S  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( G `  g ) >. } ) ) )  ->  D  e.  X )
14 simplr 528 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g : z --> S  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( G `  g ) >. } ) ) )  ->  z  e.  D )
15 tfrcllembacc.u . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
1615adantlr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  D )  /\  x  e.  U. X )  ->  suc  x  e.  X )
1716adantlr 477 . . . . . . . 8  |-  ( ( ( ( ph  /\  z  e.  D )  /\  ( g : z --> S  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) )  /\  x  e.  U. X )  ->  suc  x  e.  X )
18 simpr1 1004 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g : z --> S  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( G `  g ) >. } ) ) )  ->  g : z --> S )
19 simpr2 1005 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g : z --> S  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( G `  g ) >. } ) ) )  ->  g  e.  A )
203, 5, 7, 10, 11, 13, 14, 17, 18, 19tfrcllemsucaccv 6369 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g : z --> S  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( G `  g ) >. } ) ) )  ->  (
g  u.  { <. z ,  ( G `  g ) >. } )  e.  A )
212, 20eqeltrd 2264 . . . . . 6  |-  ( ( ( ph  /\  z  e.  D )  /\  (
g : z --> S  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( G `  g ) >. } ) ) )  ->  h  e.  A )
2221ex 115 . . . . 5  |-  ( (
ph  /\  z  e.  D )  ->  (
( g : z --> S  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) )  ->  h  e.  A )
)
2322exlimdv 1829 . . . 4  |-  ( (
ph  /\  z  e.  D )  ->  ( E. g ( g : z --> S  /\  g  e.  A  /\  h  =  ( g  u. 
{ <. z ,  ( G `  g )
>. } ) )  ->  h  e.  A )
)
2423rexlimdva 2604 . . 3  |-  ( ph  ->  ( E. z  e.  D  E. g ( g : z --> S  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( G `  g ) >. } ) )  ->  h  e.  A ) )
2524abssdv 3241 . 2  |-  ( ph  ->  { h  |  E. z  e.  D  E. g ( g : z --> S  /\  g  e.  A  /\  h  =  ( g  u. 
{ <. z ,  ( G `  g )
>. } ) ) } 
C_  A )
261, 25eqsstrid 3213 1  |-  ( ph  ->  B  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 979    = wceq 1363   E.wex 1502    e. wcel 2158   {cab 2173   A.wral 2465   E.wrex 2466    u. cun 3139    C_ wss 3141   {csn 3604   <.cop 3607   U.cuni 3821   Ord word 4374   suc csuc 4377    |` cres 4640   Fun wfun 5222   -->wf 5224   ` cfv 5228  recscrecs 6319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-suc 4383  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236
This theorem is referenced by:  tfrcllembfn  6372  tfrcllemubacc  6374
  Copyright terms: Public domain W3C validator