Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > frecfcllem | Unicode version |
Description: Lemma for frecfcl 6384. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 30-Mar-2022.) |
Ref | Expression |
---|---|
frecfcllem.g | recs |
Ref | Expression |
---|---|
frecfcllem | frec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frecfcllem.g | . . . . . 6 recs | |
2 | funmpt 5236 | . . . . . . 7 | |
3 | 2 | a1i 9 | . . . . . 6 |
4 | ordom 4591 | . . . . . . 7 | |
5 | 4 | a1i 9 | . . . . . 6 |
6 | vex 2733 | . . . . . . . 8 | |
7 | simp2 993 | . . . . . . . . 9 | |
8 | simp3 994 | . . . . . . . . 9 | |
9 | simp1ll 1055 | . . . . . . . . . 10 | |
10 | fveq2 5496 | . . . . . . . . . . . 12 | |
11 | 10 | eleq1d 2239 | . . . . . . . . . . 11 |
12 | 11 | cbvralv 2696 | . . . . . . . . . 10 |
13 | 9, 12 | sylib 121 | . . . . . . . . 9 |
14 | simp1lr 1056 | . . . . . . . . 9 | |
15 | 7, 8, 13, 14 | frecabcl 6378 | . . . . . . . 8 |
16 | dmeq 4811 | . . . . . . . . . . . . . 14 | |
17 | 16 | eqeq1d 2179 | . . . . . . . . . . . . 13 |
18 | fveq1 5495 | . . . . . . . . . . . . . . 15 | |
19 | 18 | fveq2d 5500 | . . . . . . . . . . . . . 14 |
20 | 19 | eleq2d 2240 | . . . . . . . . . . . . 13 |
21 | 17, 20 | anbi12d 470 | . . . . . . . . . . . 12 |
22 | 21 | rexbidv 2471 | . . . . . . . . . . 11 |
23 | 16 | eqeq1d 2179 | . . . . . . . . . . . 12 |
24 | 23 | anbi1d 462 | . . . . . . . . . . 11 |
25 | 22, 24 | orbi12d 788 | . . . . . . . . . 10 |
26 | 25 | abbidv 2288 | . . . . . . . . 9 |
27 | eqid 2170 | . . . . . . . . 9 | |
28 | 26, 27 | fvmptg 5572 | . . . . . . . 8 |
29 | 6, 15, 28 | sylancr 412 | . . . . . . 7 |
30 | 29, 15 | eqeltrd 2247 | . . . . . 6 |
31 | limom 4598 | . . . . . . . . . 10 | |
32 | limuni 4381 | . . . . . . . . . 10 | |
33 | 31, 32 | ax-mp 5 | . . . . . . . . 9 |
34 | 33 | eleq2i 2237 | . . . . . . . 8 |
35 | peano2 4579 | . . . . . . . 8 | |
36 | 34, 35 | sylbir 134 | . . . . . . 7 |
37 | 36 | adantl 275 | . . . . . 6 |
38 | 33 | eleq2i 2237 | . . . . . . . 8 |
39 | 38 | biimpi 119 | . . . . . . 7 |
40 | 39 | adantl 275 | . . . . . 6 |
41 | 1, 3, 5, 30, 37, 40 | tfrcldm 6342 | . . . . 5 |
42 | 1, 3, 5, 30, 37, 40 | tfrcl 6343 | . . . . 5 |
43 | 41, 42 | jca 304 | . . . 4 |
44 | 43 | ralrimiva 2543 | . . 3 |
45 | tfrfun 6299 | . . . . 5 recs | |
46 | 1 | funeqi 5219 | . . . . 5 recs |
47 | 45, 46 | mpbir 145 | . . . 4 |
48 | ffvresb 5659 | . . . 4 | |
49 | 47, 48 | ax-mp 5 | . . 3 |
50 | 44, 49 | sylibr 133 | . 2 |
51 | df-frec 6370 | . . . 4 frec recs | |
52 | 1 | reseq1i 4887 | . . . 4 recs |
53 | 51, 52 | eqtr4i 2194 | . . 3 frec |
54 | 53 | feq1i 5340 | . 2 frec |
55 | 50, 54 | sylibr 133 | 1 frec |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 703 w3a 973 wceq 1348 wcel 2141 cab 2156 wral 2448 wrex 2449 cvv 2730 c0 3414 cuni 3796 cmpt 4050 word 4347 wlim 4349 csuc 4350 com 4574 cdm 4611 cres 4613 wfun 5192 wf 5194 cfv 5198 recscrecs 6283 freccfrec 6369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-recs 6284 df-frec 6370 |
This theorem is referenced by: frecfcl 6384 |
Copyright terms: Public domain | W3C validator |