Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > frecfcllem | Unicode version |
Description: Lemma for frecfcl 6346. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 30-Mar-2022.) |
Ref | Expression |
---|---|
frecfcllem.g | recs |
Ref | Expression |
---|---|
frecfcllem | frec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frecfcllem.g | . . . . . 6 recs | |
2 | funmpt 5205 | . . . . . . 7 | |
3 | 2 | a1i 9 | . . . . . 6 |
4 | ordom 4564 | . . . . . . 7 | |
5 | 4 | a1i 9 | . . . . . 6 |
6 | vex 2715 | . . . . . . . 8 | |
7 | simp2 983 | . . . . . . . . 9 | |
8 | simp3 984 | . . . . . . . . 9 | |
9 | simp1ll 1045 | . . . . . . . . . 10 | |
10 | fveq2 5465 | . . . . . . . . . . . 12 | |
11 | 10 | eleq1d 2226 | . . . . . . . . . . 11 |
12 | 11 | cbvralv 2680 | . . . . . . . . . 10 |
13 | 9, 12 | sylib 121 | . . . . . . . . 9 |
14 | simp1lr 1046 | . . . . . . . . 9 | |
15 | 7, 8, 13, 14 | frecabcl 6340 | . . . . . . . 8 |
16 | dmeq 4783 | . . . . . . . . . . . . . 14 | |
17 | 16 | eqeq1d 2166 | . . . . . . . . . . . . 13 |
18 | fveq1 5464 | . . . . . . . . . . . . . . 15 | |
19 | 18 | fveq2d 5469 | . . . . . . . . . . . . . 14 |
20 | 19 | eleq2d 2227 | . . . . . . . . . . . . 13 |
21 | 17, 20 | anbi12d 465 | . . . . . . . . . . . 12 |
22 | 21 | rexbidv 2458 | . . . . . . . . . . 11 |
23 | 16 | eqeq1d 2166 | . . . . . . . . . . . 12 |
24 | 23 | anbi1d 461 | . . . . . . . . . . 11 |
25 | 22, 24 | orbi12d 783 | . . . . . . . . . 10 |
26 | 25 | abbidv 2275 | . . . . . . . . 9 |
27 | eqid 2157 | . . . . . . . . 9 | |
28 | 26, 27 | fvmptg 5541 | . . . . . . . 8 |
29 | 6, 15, 28 | sylancr 411 | . . . . . . 7 |
30 | 29, 15 | eqeltrd 2234 | . . . . . 6 |
31 | limom 4571 | . . . . . . . . . 10 | |
32 | limuni 4355 | . . . . . . . . . 10 | |
33 | 31, 32 | ax-mp 5 | . . . . . . . . 9 |
34 | 33 | eleq2i 2224 | . . . . . . . 8 |
35 | peano2 4552 | . . . . . . . 8 | |
36 | 34, 35 | sylbir 134 | . . . . . . 7 |
37 | 36 | adantl 275 | . . . . . 6 |
38 | 33 | eleq2i 2224 | . . . . . . . 8 |
39 | 38 | biimpi 119 | . . . . . . 7 |
40 | 39 | adantl 275 | . . . . . 6 |
41 | 1, 3, 5, 30, 37, 40 | tfrcldm 6304 | . . . . 5 |
42 | 1, 3, 5, 30, 37, 40 | tfrcl 6305 | . . . . 5 |
43 | 41, 42 | jca 304 | . . . 4 |
44 | 43 | ralrimiva 2530 | . . 3 |
45 | tfrfun 6261 | . . . . 5 recs | |
46 | 1 | funeqi 5188 | . . . . 5 recs |
47 | 45, 46 | mpbir 145 | . . . 4 |
48 | ffvresb 5627 | . . . 4 | |
49 | 47, 48 | ax-mp 5 | . . 3 |
50 | 44, 49 | sylibr 133 | . 2 |
51 | df-frec 6332 | . . . 4 frec recs | |
52 | 1 | reseq1i 4859 | . . . 4 recs |
53 | 51, 52 | eqtr4i 2181 | . . 3 frec |
54 | 53 | feq1i 5309 | . 2 frec |
55 | 50, 54 | sylibr 133 | 1 frec |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 698 w3a 963 wceq 1335 wcel 2128 cab 2143 wral 2435 wrex 2436 cvv 2712 c0 3394 cuni 3772 cmpt 4025 word 4321 wlim 4323 csuc 4324 com 4547 cdm 4583 cres 4585 wfun 5161 wf 5163 cfv 5167 recscrecs 6245 freccfrec 6331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-iinf 4545 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4252 df-iord 4325 df-on 4327 df-ilim 4328 df-suc 4330 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-recs 6246 df-frec 6332 |
This theorem is referenced by: frecfcl 6346 |
Copyright terms: Public domain | W3C validator |