ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecfcllem Unicode version

Theorem frecfcllem 6550
Description: Lemma for frecfcl 6551. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 30-Mar-2022.)
Hypothesis
Ref Expression
frecfcllem.g  |-  G  = recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
Assertion
Ref Expression
frecfcllem  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S )  -> frec ( F ,  A ) : om --> S )
Distinct variable groups:    A, g, m, x    g, F, m, x    z, F, m, x    S, m, x, z
Allowed substitution hints:    A( z)    S( g)    G( x, z, g, m)

Proof of Theorem frecfcllem
Dummy variables  f  y  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frecfcllem.g . . . . . 6  |-  G  = recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
2 funmpt 5356 . . . . . . 7  |-  Fun  (
g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
32a1i 9 . . . . . 6  |-  ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  ->  Fun  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
4 ordom 4699 . . . . . . 7  |-  Ord  om
54a1i 9 . . . . . 6  |-  ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  ->  Ord  om )
6 vex 2802 . . . . . . . 8  |-  f  e. 
_V
7 simp2 1022 . . . . . . . . 9  |-  ( ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  /\  y  e. 
om  /\  f :
y --> S )  -> 
y  e.  om )
8 simp3 1023 . . . . . . . . 9  |-  ( ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  /\  y  e. 
om  /\  f :
y --> S )  -> 
f : y --> S )
9 simp1ll 1084 . . . . . . . . . 10  |-  ( ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  /\  y  e. 
om  /\  f :
y --> S )  ->  A. z  e.  S  ( F `  z )  e.  S )
10 fveq2 5627 . . . . . . . . . . . 12  |-  ( z  =  w  ->  ( F `  z )  =  ( F `  w ) )
1110eleq1d 2298 . . . . . . . . . . 11  |-  ( z  =  w  ->  (
( F `  z
)  e.  S  <->  ( F `  w )  e.  S
) )
1211cbvralv 2765 . . . . . . . . . 10  |-  ( A. z  e.  S  ( F `  z )  e.  S  <->  A. w  e.  S  ( F `  w )  e.  S )
139, 12sylib 122 . . . . . . . . 9  |-  ( ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  /\  y  e. 
om  /\  f :
y --> S )  ->  A. w  e.  S  ( F `  w )  e.  S )
14 simp1lr 1085 . . . . . . . . 9  |-  ( ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  /\  y  e. 
om  /\  f :
y --> S )  ->  A  e.  S )
157, 8, 13, 14frecabcl 6545 . . . . . . . 8  |-  ( ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  /\  y  e. 
om  /\  f :
y --> S )  ->  { x  |  ( E. m  e.  om  ( dom  f  =  suc  m  /\  x  e.  ( F `  ( f `
 m ) ) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) }  e.  S )
16 dmeq 4923 . . . . . . . . . . . . . 14  |-  ( g  =  f  ->  dom  g  =  dom  f )
1716eqeq1d 2238 . . . . . . . . . . . . 13  |-  ( g  =  f  ->  ( dom  g  =  suc  m 
<->  dom  f  =  suc  m ) )
18 fveq1 5626 . . . . . . . . . . . . . . 15  |-  ( g  =  f  ->  (
g `  m )  =  ( f `  m ) )
1918fveq2d 5631 . . . . . . . . . . . . . 14  |-  ( g  =  f  ->  ( F `  ( g `  m ) )  =  ( F `  (
f `  m )
) )
2019eleq2d 2299 . . . . . . . . . . . . 13  |-  ( g  =  f  ->  (
x  e.  ( F `
 ( g `  m ) )  <->  x  e.  ( F `  ( f `
 m ) ) ) )
2117, 20anbi12d 473 . . . . . . . . . . . 12  |-  ( g  =  f  ->  (
( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  <->  ( dom  f  =  suc  m  /\  x  e.  ( F `  ( f `  m
) ) ) ) )
2221rexbidv 2531 . . . . . . . . . . 11  |-  ( g  =  f  ->  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  <->  E. m  e.  om  ( dom  f  =  suc  m  /\  x  e.  ( F `  ( f `
 m ) ) ) ) )
2316eqeq1d 2238 . . . . . . . . . . . 12  |-  ( g  =  f  ->  ( dom  g  =  (/)  <->  dom  f  =  (/) ) )
2423anbi1d 465 . . . . . . . . . . 11  |-  ( g  =  f  ->  (
( dom  g  =  (/) 
/\  x  e.  A
)  <->  ( dom  f  =  (/)  /\  x  e.  A ) ) )
2522, 24orbi12d 798 . . . . . . . . . 10  |-  ( g  =  f  ->  (
( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) )  <->  ( E. m  e.  om  ( dom  f  =  suc  m  /\  x  e.  ( F `  ( f `
 m ) ) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) ) )
2625abbidv 2347 . . . . . . . . 9  |-  ( g  =  f  ->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }  =  { x  |  ( E. m  e. 
om  ( dom  f  =  suc  m  /\  x  e.  ( F `  (
f `  m )
) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) } )
27 eqid 2229 . . . . . . . . 9  |-  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
2826, 27fvmptg 5710 . . . . . . . 8  |-  ( ( f  e.  _V  /\  { x  |  ( E. m  e.  om  ( dom  f  =  suc  m  /\  x  e.  ( F `  ( f `
 m ) ) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) }  e.  S )  -> 
( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  f )  =  { x  |  ( E. m  e. 
om  ( dom  f  =  suc  m  /\  x  e.  ( F `  (
f `  m )
) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) } )
296, 15, 28sylancr 414 . . . . . . 7  |-  ( ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  /\  y  e. 
om  /\  f :
y --> S )  -> 
( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  f )  =  { x  |  ( E. m  e. 
om  ( dom  f  =  suc  m  /\  x  e.  ( F `  (
f `  m )
) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) } )
3029, 15eqeltrd 2306 . . . . . 6  |-  ( ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  /\  y  e. 
om  /\  f :
y --> S )  -> 
( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  f )  e.  S )
31 limom 4706 . . . . . . . . . 10  |-  Lim  om
32 limuni 4487 . . . . . . . . . 10  |-  ( Lim 
om  ->  om  =  U. om )
3331, 32ax-mp 5 . . . . . . . . 9  |-  om  =  U. om
3433eleq2i 2296 . . . . . . . 8  |-  ( y  e.  om  <->  y  e.  U.
om )
35 peano2 4687 . . . . . . . 8  |-  ( y  e.  om  ->  suc  y  e.  om )
3634, 35sylbir 135 . . . . . . 7  |-  ( y  e.  U. om  ->  suc  y  e.  om )
3736adantl 277 . . . . . 6  |-  ( ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  /\  y  e. 
U. om )  ->  suc  y  e.  om )
3833eleq2i 2296 . . . . . . . 8  |-  ( k  e.  om  <->  k  e.  U.
om )
3938biimpi 120 . . . . . . 7  |-  ( k  e.  om  ->  k  e.  U. om )
4039adantl 277 . . . . . 6  |-  ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  ->  k  e.  U.
om )
411, 3, 5, 30, 37, 40tfrcldm 6509 . . . . 5  |-  ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  ->  k  e.  dom  G )
421, 3, 5, 30, 37, 40tfrcl 6510 . . . . 5  |-  ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  ->  ( G `  k )  e.  S
)
4341, 42jca 306 . . . 4  |-  ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  ->  ( k  e.  dom  G  /\  ( G `  k )  e.  S ) )
4443ralrimiva 2603 . . 3  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S )  ->  A. k  e.  om  ( k  e. 
dom  G  /\  ( G `  k )  e.  S ) )
45 tfrfun 6466 . . . . 5  |-  Fun recs (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
461funeqi 5339 . . . . 5  |-  ( Fun 
G  <->  Fun recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) ) )
4745, 46mpbir 146 . . . 4  |-  Fun  G
48 ffvresb 5798 . . . 4  |-  ( Fun 
G  ->  ( ( G  |`  om ) : om --> S  <->  A. k  e.  om  ( k  e. 
dom  G  /\  ( G `  k )  e.  S ) ) )
4947, 48ax-mp 5 . . 3  |-  ( ( G  |`  om ) : om --> S  <->  A. k  e.  om  ( k  e. 
dom  G  /\  ( G `  k )  e.  S ) )
5044, 49sylibr 134 . 2  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S )  ->  ( G  |`  om ) : om --> S )
51 df-frec 6537 . . . 4  |- frec ( F ,  A )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
521reseq1i 5001 . . . 4  |-  ( G  |`  om )  =  (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
5351, 52eqtr4i 2253 . . 3  |- frec ( F ,  A )  =  ( G  |`  om )
5453feq1i 5466 . 2  |-  (frec ( F ,  A ) : om --> S  <->  ( G  |` 
om ) : om --> S )
5550, 54sylibr 134 1  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S )  -> frec ( F ,  A ) : om --> S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200   {cab 2215   A.wral 2508   E.wrex 2509   _Vcvv 2799   (/)c0 3491   U.cuni 3888    |-> cmpt 4145   Ord word 4453   Lim wlim 4455   suc csuc 4456   omcom 4682   dom cdm 4719    |` cres 4721   Fun wfun 5312   -->wf 5314   ` cfv 5318  recscrecs 6450  freccfrec 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-recs 6451  df-frec 6537
This theorem is referenced by:  frecfcl  6551
  Copyright terms: Public domain W3C validator