ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecfcllem Unicode version

Theorem frecfcllem 6269
Description: Lemma for frecfcl 6270. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 30-Mar-2022.)
Hypothesis
Ref Expression
frecfcllem.g  |-  G  = recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
Assertion
Ref Expression
frecfcllem  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S )  -> frec ( F ,  A ) : om --> S )
Distinct variable groups:    A, g, m, x    g, F, m, x    z, F, m, x    S, m, x, z
Allowed substitution hints:    A( z)    S( g)    G( x, z, g, m)

Proof of Theorem frecfcllem
Dummy variables  f  y  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frecfcllem.g . . . . . 6  |-  G  = recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
2 funmpt 5131 . . . . . . 7  |-  Fun  (
g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
32a1i 9 . . . . . 6  |-  ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  ->  Fun  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
4 ordom 4490 . . . . . . 7  |-  Ord  om
54a1i 9 . . . . . 6  |-  ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  ->  Ord  om )
6 vex 2663 . . . . . . . 8  |-  f  e. 
_V
7 simp2 967 . . . . . . . . 9  |-  ( ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  /\  y  e. 
om  /\  f :
y --> S )  -> 
y  e.  om )
8 simp3 968 . . . . . . . . 9  |-  ( ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  /\  y  e. 
om  /\  f :
y --> S )  -> 
f : y --> S )
9 simp1ll 1029 . . . . . . . . . 10  |-  ( ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  /\  y  e. 
om  /\  f :
y --> S )  ->  A. z  e.  S  ( F `  z )  e.  S )
10 fveq2 5389 . . . . . . . . . . . 12  |-  ( z  =  w  ->  ( F `  z )  =  ( F `  w ) )
1110eleq1d 2186 . . . . . . . . . . 11  |-  ( z  =  w  ->  (
( F `  z
)  e.  S  <->  ( F `  w )  e.  S
) )
1211cbvralv 2631 . . . . . . . . . 10  |-  ( A. z  e.  S  ( F `  z )  e.  S  <->  A. w  e.  S  ( F `  w )  e.  S )
139, 12sylib 121 . . . . . . . . 9  |-  ( ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  /\  y  e. 
om  /\  f :
y --> S )  ->  A. w  e.  S  ( F `  w )  e.  S )
14 simp1lr 1030 . . . . . . . . 9  |-  ( ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  /\  y  e. 
om  /\  f :
y --> S )  ->  A  e.  S )
157, 8, 13, 14frecabcl 6264 . . . . . . . 8  |-  ( ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  /\  y  e. 
om  /\  f :
y --> S )  ->  { x  |  ( E. m  e.  om  ( dom  f  =  suc  m  /\  x  e.  ( F `  ( f `
 m ) ) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) }  e.  S )
16 dmeq 4709 . . . . . . . . . . . . . 14  |-  ( g  =  f  ->  dom  g  =  dom  f )
1716eqeq1d 2126 . . . . . . . . . . . . 13  |-  ( g  =  f  ->  ( dom  g  =  suc  m 
<->  dom  f  =  suc  m ) )
18 fveq1 5388 . . . . . . . . . . . . . . 15  |-  ( g  =  f  ->  (
g `  m )  =  ( f `  m ) )
1918fveq2d 5393 . . . . . . . . . . . . . 14  |-  ( g  =  f  ->  ( F `  ( g `  m ) )  =  ( F `  (
f `  m )
) )
2019eleq2d 2187 . . . . . . . . . . . . 13  |-  ( g  =  f  ->  (
x  e.  ( F `
 ( g `  m ) )  <->  x  e.  ( F `  ( f `
 m ) ) ) )
2117, 20anbi12d 464 . . . . . . . . . . . 12  |-  ( g  =  f  ->  (
( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  <->  ( dom  f  =  suc  m  /\  x  e.  ( F `  ( f `  m
) ) ) ) )
2221rexbidv 2415 . . . . . . . . . . 11  |-  ( g  =  f  ->  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  <->  E. m  e.  om  ( dom  f  =  suc  m  /\  x  e.  ( F `  ( f `
 m ) ) ) ) )
2316eqeq1d 2126 . . . . . . . . . . . 12  |-  ( g  =  f  ->  ( dom  g  =  (/)  <->  dom  f  =  (/) ) )
2423anbi1d 460 . . . . . . . . . . 11  |-  ( g  =  f  ->  (
( dom  g  =  (/) 
/\  x  e.  A
)  <->  ( dom  f  =  (/)  /\  x  e.  A ) ) )
2522, 24orbi12d 767 . . . . . . . . . 10  |-  ( g  =  f  ->  (
( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) )  <->  ( E. m  e.  om  ( dom  f  =  suc  m  /\  x  e.  ( F `  ( f `
 m ) ) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) ) )
2625abbidv 2235 . . . . . . . . 9  |-  ( g  =  f  ->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }  =  { x  |  ( E. m  e. 
om  ( dom  f  =  suc  m  /\  x  e.  ( F `  (
f `  m )
) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) } )
27 eqid 2117 . . . . . . . . 9  |-  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
2826, 27fvmptg 5465 . . . . . . . 8  |-  ( ( f  e.  _V  /\  { x  |  ( E. m  e.  om  ( dom  f  =  suc  m  /\  x  e.  ( F `  ( f `
 m ) ) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) }  e.  S )  -> 
( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  f )  =  { x  |  ( E. m  e. 
om  ( dom  f  =  suc  m  /\  x  e.  ( F `  (
f `  m )
) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) } )
296, 15, 28sylancr 410 . . . . . . 7  |-  ( ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  /\  y  e. 
om  /\  f :
y --> S )  -> 
( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  f )  =  { x  |  ( E. m  e. 
om  ( dom  f  =  suc  m  /\  x  e.  ( F `  (
f `  m )
) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) } )
3029, 15eqeltrd 2194 . . . . . 6  |-  ( ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  /\  y  e. 
om  /\  f :
y --> S )  -> 
( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  f )  e.  S )
31 limom 4497 . . . . . . . . . 10  |-  Lim  om
32 limuni 4288 . . . . . . . . . 10  |-  ( Lim 
om  ->  om  =  U. om )
3331, 32ax-mp 5 . . . . . . . . 9  |-  om  =  U. om
3433eleq2i 2184 . . . . . . . 8  |-  ( y  e.  om  <->  y  e.  U.
om )
35 peano2 4479 . . . . . . . 8  |-  ( y  e.  om  ->  suc  y  e.  om )
3634, 35sylbir 134 . . . . . . 7  |-  ( y  e.  U. om  ->  suc  y  e.  om )
3736adantl 275 . . . . . 6  |-  ( ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  /\  y  e. 
U. om )  ->  suc  y  e.  om )
3833eleq2i 2184 . . . . . . . 8  |-  ( k  e.  om  <->  k  e.  U.
om )
3938biimpi 119 . . . . . . 7  |-  ( k  e.  om  ->  k  e.  U. om )
4039adantl 275 . . . . . 6  |-  ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  ->  k  e.  U.
om )
411, 3, 5, 30, 37, 40tfrcldm 6228 . . . . 5  |-  ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  ->  k  e.  dom  G )
421, 3, 5, 30, 37, 40tfrcl 6229 . . . . 5  |-  ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  ->  ( G `  k )  e.  S
)
4341, 42jca 304 . . . 4  |-  ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  ->  ( k  e.  dom  G  /\  ( G `  k )  e.  S ) )
4443ralrimiva 2482 . . 3  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S )  ->  A. k  e.  om  ( k  e. 
dom  G  /\  ( G `  k )  e.  S ) )
45 tfrfun 6185 . . . . 5  |-  Fun recs (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
461funeqi 5114 . . . . 5  |-  ( Fun 
G  <->  Fun recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) ) )
4745, 46mpbir 145 . . . 4  |-  Fun  G
48 ffvresb 5551 . . . 4  |-  ( Fun 
G  ->  ( ( G  |`  om ) : om --> S  <->  A. k  e.  om  ( k  e. 
dom  G  /\  ( G `  k )  e.  S ) ) )
4947, 48ax-mp 5 . . 3  |-  ( ( G  |`  om ) : om --> S  <->  A. k  e.  om  ( k  e. 
dom  G  /\  ( G `  k )  e.  S ) )
5044, 49sylibr 133 . 2  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S )  ->  ( G  |`  om ) : om --> S )
51 df-frec 6256 . . . 4  |- frec ( F ,  A )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
521reseq1i 4785 . . . 4  |-  ( G  |`  om )  =  (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
5351, 52eqtr4i 2141 . . 3  |- frec ( F ,  A )  =  ( G  |`  om )
5453feq1i 5235 . 2  |-  (frec ( F ,  A ) : om --> S  <->  ( G  |` 
om ) : om --> S )
5550, 54sylibr 133 1  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S )  -> frec ( F ,  A ) : om --> S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 682    /\ w3a 947    = wceq 1316    e. wcel 1465   {cab 2103   A.wral 2393   E.wrex 2394   _Vcvv 2660   (/)c0 3333   U.cuni 3706    |-> cmpt 3959   Ord word 4254   Lim wlim 4256   suc csuc 4257   omcom 4474   dom cdm 4509    |` cres 4511   Fun wfun 5087   -->wf 5089   ` cfv 5093  recscrecs 6169  freccfrec 6255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-recs 6170  df-frec 6256
This theorem is referenced by:  frecfcl  6270
  Copyright terms: Public domain W3C validator