| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frecfcllem | Unicode version | ||
| Description: Lemma for frecfcl 6551. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 30-Mar-2022.) |
| Ref | Expression |
|---|---|
| frecfcllem.g |
|
| Ref | Expression |
|---|---|
| frecfcllem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frecfcllem.g |
. . . . . 6
| |
| 2 | funmpt 5356 |
. . . . . . 7
| |
| 3 | 2 | a1i 9 |
. . . . . 6
|
| 4 | ordom 4699 |
. . . . . . 7
| |
| 5 | 4 | a1i 9 |
. . . . . 6
|
| 6 | vex 2802 |
. . . . . . . 8
| |
| 7 | simp2 1022 |
. . . . . . . . 9
| |
| 8 | simp3 1023 |
. . . . . . . . 9
| |
| 9 | simp1ll 1084 |
. . . . . . . . . 10
| |
| 10 | fveq2 5627 |
. . . . . . . . . . . 12
| |
| 11 | 10 | eleq1d 2298 |
. . . . . . . . . . 11
|
| 12 | 11 | cbvralv 2765 |
. . . . . . . . . 10
|
| 13 | 9, 12 | sylib 122 |
. . . . . . . . 9
|
| 14 | simp1lr 1085 |
. . . . . . . . 9
| |
| 15 | 7, 8, 13, 14 | frecabcl 6545 |
. . . . . . . 8
|
| 16 | dmeq 4923 |
. . . . . . . . . . . . . 14
| |
| 17 | 16 | eqeq1d 2238 |
. . . . . . . . . . . . 13
|
| 18 | fveq1 5626 |
. . . . . . . . . . . . . . 15
| |
| 19 | 18 | fveq2d 5631 |
. . . . . . . . . . . . . 14
|
| 20 | 19 | eleq2d 2299 |
. . . . . . . . . . . . 13
|
| 21 | 17, 20 | anbi12d 473 |
. . . . . . . . . . . 12
|
| 22 | 21 | rexbidv 2531 |
. . . . . . . . . . 11
|
| 23 | 16 | eqeq1d 2238 |
. . . . . . . . . . . 12
|
| 24 | 23 | anbi1d 465 |
. . . . . . . . . . 11
|
| 25 | 22, 24 | orbi12d 798 |
. . . . . . . . . 10
|
| 26 | 25 | abbidv 2347 |
. . . . . . . . 9
|
| 27 | eqid 2229 |
. . . . . . . . 9
| |
| 28 | 26, 27 | fvmptg 5710 |
. . . . . . . 8
|
| 29 | 6, 15, 28 | sylancr 414 |
. . . . . . 7
|
| 30 | 29, 15 | eqeltrd 2306 |
. . . . . 6
|
| 31 | limom 4706 |
. . . . . . . . . 10
| |
| 32 | limuni 4487 |
. . . . . . . . . 10
| |
| 33 | 31, 32 | ax-mp 5 |
. . . . . . . . 9
|
| 34 | 33 | eleq2i 2296 |
. . . . . . . 8
|
| 35 | peano2 4687 |
. . . . . . . 8
| |
| 36 | 34, 35 | sylbir 135 |
. . . . . . 7
|
| 37 | 36 | adantl 277 |
. . . . . 6
|
| 38 | 33 | eleq2i 2296 |
. . . . . . . 8
|
| 39 | 38 | biimpi 120 |
. . . . . . 7
|
| 40 | 39 | adantl 277 |
. . . . . 6
|
| 41 | 1, 3, 5, 30, 37, 40 | tfrcldm 6509 |
. . . . 5
|
| 42 | 1, 3, 5, 30, 37, 40 | tfrcl 6510 |
. . . . 5
|
| 43 | 41, 42 | jca 306 |
. . . 4
|
| 44 | 43 | ralrimiva 2603 |
. . 3
|
| 45 | tfrfun 6466 |
. . . . 5
| |
| 46 | 1 | funeqi 5339 |
. . . . 5
|
| 47 | 45, 46 | mpbir 146 |
. . . 4
|
| 48 | ffvresb 5798 |
. . . 4
| |
| 49 | 47, 48 | ax-mp 5 |
. . 3
|
| 50 | 44, 49 | sylibr 134 |
. 2
|
| 51 | df-frec 6537 |
. . . 4
| |
| 52 | 1 | reseq1i 5001 |
. . . 4
|
| 53 | 51, 52 | eqtr4i 2253 |
. . 3
|
| 54 | 53 | feq1i 5466 |
. 2
|
| 55 | 50, 54 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-recs 6451 df-frec 6537 |
| This theorem is referenced by: frecfcl 6551 |
| Copyright terms: Public domain | W3C validator |