ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecfcllem Unicode version

Theorem frecfcllem 6399
Description: Lemma for frecfcl 6400. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 30-Mar-2022.)
Hypothesis
Ref Expression
frecfcllem.g  |-  G  = recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
Assertion
Ref Expression
frecfcllem  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S )  -> frec ( F ,  A ) : om --> S )
Distinct variable groups:    A, g, m, x    g, F, m, x    z, F, m, x    S, m, x, z
Allowed substitution hints:    A( z)    S( g)    G( x, z, g, m)

Proof of Theorem frecfcllem
Dummy variables  f  y  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frecfcllem.g . . . . . 6  |-  G  = recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
2 funmpt 5250 . . . . . . 7  |-  Fun  (
g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
32a1i 9 . . . . . 6  |-  ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  ->  Fun  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
4 ordom 4603 . . . . . . 7  |-  Ord  om
54a1i 9 . . . . . 6  |-  ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  ->  Ord  om )
6 vex 2740 . . . . . . . 8  |-  f  e. 
_V
7 simp2 998 . . . . . . . . 9  |-  ( ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  /\  y  e. 
om  /\  f :
y --> S )  -> 
y  e.  om )
8 simp3 999 . . . . . . . . 9  |-  ( ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  /\  y  e. 
om  /\  f :
y --> S )  -> 
f : y --> S )
9 simp1ll 1060 . . . . . . . . . 10  |-  ( ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  /\  y  e. 
om  /\  f :
y --> S )  ->  A. z  e.  S  ( F `  z )  e.  S )
10 fveq2 5511 . . . . . . . . . . . 12  |-  ( z  =  w  ->  ( F `  z )  =  ( F `  w ) )
1110eleq1d 2246 . . . . . . . . . . 11  |-  ( z  =  w  ->  (
( F `  z
)  e.  S  <->  ( F `  w )  e.  S
) )
1211cbvralv 2703 . . . . . . . . . 10  |-  ( A. z  e.  S  ( F `  z )  e.  S  <->  A. w  e.  S  ( F `  w )  e.  S )
139, 12sylib 122 . . . . . . . . 9  |-  ( ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  /\  y  e. 
om  /\  f :
y --> S )  ->  A. w  e.  S  ( F `  w )  e.  S )
14 simp1lr 1061 . . . . . . . . 9  |-  ( ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  /\  y  e. 
om  /\  f :
y --> S )  ->  A  e.  S )
157, 8, 13, 14frecabcl 6394 . . . . . . . 8  |-  ( ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  /\  y  e. 
om  /\  f :
y --> S )  ->  { x  |  ( E. m  e.  om  ( dom  f  =  suc  m  /\  x  e.  ( F `  ( f `
 m ) ) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) }  e.  S )
16 dmeq 4823 . . . . . . . . . . . . . 14  |-  ( g  =  f  ->  dom  g  =  dom  f )
1716eqeq1d 2186 . . . . . . . . . . . . 13  |-  ( g  =  f  ->  ( dom  g  =  suc  m 
<->  dom  f  =  suc  m ) )
18 fveq1 5510 . . . . . . . . . . . . . . 15  |-  ( g  =  f  ->  (
g `  m )  =  ( f `  m ) )
1918fveq2d 5515 . . . . . . . . . . . . . 14  |-  ( g  =  f  ->  ( F `  ( g `  m ) )  =  ( F `  (
f `  m )
) )
2019eleq2d 2247 . . . . . . . . . . . . 13  |-  ( g  =  f  ->  (
x  e.  ( F `
 ( g `  m ) )  <->  x  e.  ( F `  ( f `
 m ) ) ) )
2117, 20anbi12d 473 . . . . . . . . . . . 12  |-  ( g  =  f  ->  (
( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  <->  ( dom  f  =  suc  m  /\  x  e.  ( F `  ( f `  m
) ) ) ) )
2221rexbidv 2478 . . . . . . . . . . 11  |-  ( g  =  f  ->  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  <->  E. m  e.  om  ( dom  f  =  suc  m  /\  x  e.  ( F `  ( f `
 m ) ) ) ) )
2316eqeq1d 2186 . . . . . . . . . . . 12  |-  ( g  =  f  ->  ( dom  g  =  (/)  <->  dom  f  =  (/) ) )
2423anbi1d 465 . . . . . . . . . . 11  |-  ( g  =  f  ->  (
( dom  g  =  (/) 
/\  x  e.  A
)  <->  ( dom  f  =  (/)  /\  x  e.  A ) ) )
2522, 24orbi12d 793 . . . . . . . . . 10  |-  ( g  =  f  ->  (
( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) )  <->  ( E. m  e.  om  ( dom  f  =  suc  m  /\  x  e.  ( F `  ( f `
 m ) ) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) ) )
2625abbidv 2295 . . . . . . . . 9  |-  ( g  =  f  ->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }  =  { x  |  ( E. m  e. 
om  ( dom  f  =  suc  m  /\  x  e.  ( F `  (
f `  m )
) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) } )
27 eqid 2177 . . . . . . . . 9  |-  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
2826, 27fvmptg 5588 . . . . . . . 8  |-  ( ( f  e.  _V  /\  { x  |  ( E. m  e.  om  ( dom  f  =  suc  m  /\  x  e.  ( F `  ( f `
 m ) ) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) }  e.  S )  -> 
( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  f )  =  { x  |  ( E. m  e. 
om  ( dom  f  =  suc  m  /\  x  e.  ( F `  (
f `  m )
) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) } )
296, 15, 28sylancr 414 . . . . . . 7  |-  ( ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  /\  y  e. 
om  /\  f :
y --> S )  -> 
( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  f )  =  { x  |  ( E. m  e. 
om  ( dom  f  =  suc  m  /\  x  e.  ( F `  (
f `  m )
) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) } )
3029, 15eqeltrd 2254 . . . . . 6  |-  ( ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  /\  y  e. 
om  /\  f :
y --> S )  -> 
( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  f )  e.  S )
31 limom 4610 . . . . . . . . . 10  |-  Lim  om
32 limuni 4393 . . . . . . . . . 10  |-  ( Lim 
om  ->  om  =  U. om )
3331, 32ax-mp 5 . . . . . . . . 9  |-  om  =  U. om
3433eleq2i 2244 . . . . . . . 8  |-  ( y  e.  om  <->  y  e.  U.
om )
35 peano2 4591 . . . . . . . 8  |-  ( y  e.  om  ->  suc  y  e.  om )
3634, 35sylbir 135 . . . . . . 7  |-  ( y  e.  U. om  ->  suc  y  e.  om )
3736adantl 277 . . . . . 6  |-  ( ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  /\  y  e. 
U. om )  ->  suc  y  e.  om )
3833eleq2i 2244 . . . . . . . 8  |-  ( k  e.  om  <->  k  e.  U.
om )
3938biimpi 120 . . . . . . 7  |-  ( k  e.  om  ->  k  e.  U. om )
4039adantl 277 . . . . . 6  |-  ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  ->  k  e.  U.
om )
411, 3, 5, 30, 37, 40tfrcldm 6358 . . . . 5  |-  ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  ->  k  e.  dom  G )
421, 3, 5, 30, 37, 40tfrcl 6359 . . . . 5  |-  ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  ->  ( G `  k )  e.  S
)
4341, 42jca 306 . . . 4  |-  ( ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S
)  /\  k  e.  om )  ->  ( k  e.  dom  G  /\  ( G `  k )  e.  S ) )
4443ralrimiva 2550 . . 3  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S )  ->  A. k  e.  om  ( k  e. 
dom  G  /\  ( G `  k )  e.  S ) )
45 tfrfun 6315 . . . . 5  |-  Fun recs (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
461funeqi 5233 . . . . 5  |-  ( Fun 
G  <->  Fun recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) ) )
4745, 46mpbir 146 . . . 4  |-  Fun  G
48 ffvresb 5675 . . . 4  |-  ( Fun 
G  ->  ( ( G  |`  om ) : om --> S  <->  A. k  e.  om  ( k  e. 
dom  G  /\  ( G `  k )  e.  S ) ) )
4947, 48ax-mp 5 . . 3  |-  ( ( G  |`  om ) : om --> S  <->  A. k  e.  om  ( k  e. 
dom  G  /\  ( G `  k )  e.  S ) )
5044, 49sylibr 134 . 2  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S )  ->  ( G  |`  om ) : om --> S )
51 df-frec 6386 . . . 4  |- frec ( F ,  A )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
521reseq1i 4899 . . . 4  |-  ( G  |`  om )  =  (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
5351, 52eqtr4i 2201 . . 3  |- frec ( F ,  A )  =  ( G  |`  om )
5453feq1i 5354 . 2  |-  (frec ( F ,  A ) : om --> S  <->  ( G  |` 
om ) : om --> S )
5550, 54sylibr 134 1  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S )  -> frec ( F ,  A ) : om --> S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2148   {cab 2163   A.wral 2455   E.wrex 2456   _Vcvv 2737   (/)c0 3422   U.cuni 3807    |-> cmpt 4061   Ord word 4359   Lim wlim 4361   suc csuc 4362   omcom 4586   dom cdm 4623    |` cres 4625   Fun wfun 5206   -->wf 5208   ` cfv 5212  recscrecs 6299  freccfrec 6385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-recs 6300  df-frec 6386
This theorem is referenced by:  frecfcl  6400
  Copyright terms: Public domain W3C validator